File size: 28,109 Bytes
26fd00c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 |
import os
import json
# import torch
# import clip
from PIL import Image
# import sng_parser
from tqdm import tqdm
import codecs
import numpy as np
import csv
import sys
from io import BytesIO
import base64
import pickle
from random import shuffle
import ast
# uniq-id, image (base64 string), caption, question, answer,
#ground-truth objects (objects appearing in the caption or question),
#dataset name (source of the data) and task type (caption, qa or visual gronunding).
# import subprocess
from multiprocessing import Pool
# import shutil
try:
from psutil import cpu_count
except:
from multiprocessing import cpu_count
from functools import partial
def remove_special(input_string):
final_string = ""
for character in input_string:
if character == " ":
final_string = final_string + character
else:
if(character.isalnum()):
final_string = final_string + character
return final_string
def convert_img_to_str(file_name):
img = Image.open(file_name) # path to file
img_buffer = BytesIO()
img.save(img_buffer, format=img.format)
byte_data = img_buffer.getvalue()
base64_str = base64.b64encode(byte_data) # bytes
base64_str = base64_str.decode("utf-8") # str
return base64_str
def add_new_tsv(original_tsv_path, new_tsv, output_path):
tsv = []
with open(original_tsv_path) as file:
tsv_file = csv.reader(file, delimiter='\t')
for line in tqdm(tsv_file):
tsv.append(line)
start_id = len(tsv)+1
print(start_id)
for d in tqdm(new_tsv):
d[0] = d[0] + start_id
tsv.append(d)
shuffle(tsv)
with open(output_path, 'w', newline='') as f_output:
csv_output = csv.writer(f_output, delimiter='\t')
for t in tqdm(tsv):
csv_output.writerow(t)
return tsv
def get_tsv_caption_data_from_json(original_data, start_id, dataset_name, task_type, convert_images=True):
tsv_data = []
for i, d in tqdm(enumerate(original_data)):
caption = remove_special(d['caption'])
img_path = d['image']
if convert_images:
img = convert_img_to_str(img_path)
else:
img_path = img_path.replace('/data/mshukor/data/', '')
img = img_path
t = [start_id, img, caption, '','', '', dataset_name, task_type]
tsv_data.append(t)
start_id+=1
return tsv_data
def get_tsv_caption_data_from_video_json(original_data, start_id, dataset_name, task_type, convert_images=True, prefix=None):
tsv_data = []
for i, d in tqdm(enumerate(original_data)):
caption = remove_special(d['caption'])
if prefix is not None:
img_path = os.path.join(prefix, d['video'])
if convert_images:
img = convert_img_to_str(img_path)
else:
img_path = img_path.replace('/data/mshukor/data/', '')
img = img_path
t = [start_id, img, caption, '','', '', dataset_name, task_type]
tsv_data.append(t)
start_id+=1
return tsv_data
def get_tsv_vqa_data_from_json(original_data, start_id, dataset_name, task_type, image_root=None, convert_images=True):
tsv_data = []
for i, d in tqdm(enumerate(original_data)):
question = remove_special(d['question'])
img_path = d['image']
if 'COCO_' in img_path:
img_path = os.path.join('coco/', img_path)
if image_root is not None:
img_path = os.path.join(image_root, img_path)
if convert_images:
img = convert_img_to_str(img_path)
else:
img_path = img_path.replace('/data/mshukor/data/', '')
img = img_path
answers = set(d['answer'])
answer_weight = {}
for ans in answers:
ans = remove_special(ans)
if ans in answer_weight.keys():
answer_weight[ans] += 1/len(answers)
else:
answer_weight[ans] = 1/len(answers)
ans_ = ["{:.1f}".format(conf)+'|!+'+ans for ans, conf in answer_weight.items()]
ans_ = '&&'.join(ans_)
t = [start_id, img, '', question, ans_, '', dataset_name, task_type]
tsv_data.append(t)
start_id+=1
shuffle(tsv_data)
return tsv_data
def get_tsv_vqa_synth_data_from_json(original_data, start_id, dataset_name, task_type, image_root=None, convert_images=True, data_type='all'):
tsv_data = []
for i, d in tqdm(enumerate(original_data)):
if data_type == 'manual' and 'manual' in d['dataset']:
pass
elif data_type == 'auto' and 'manual' not in d['dataset']:
pass
elif data_type == 'all':
pass
else:
continue
question = remove_special(d['question'])
img_path = d['image']
if 'COCO_' in img_path:
img_path = os.path.join('coco/', img_path)
if image_root is not None:
img_path = os.path.join(image_root, img_path)
if convert_images:
img = convert_img_to_str(img_path)
else:
img_path = img_path.replace('/data/mshukor/data/', '')
img = img_path
answers = set(d['answer'])
answer_weight = {}
for ans in answers:
ans = remove_special(ans)
if ans in answer_weight.keys():
answer_weight[ans] += 1/len(answers)
else:
answer_weight[ans] = 1/len(answers)
ans_ = ["{:.1f}".format(conf)+'|!+'+ans for ans, conf in answer_weight.items()]
ans_ = '&&'.join(ans_)
t = [start_id, img, '', question, ans_, '', dataset_name, task_type]
tsv_data.append(t)
start_id+=1
shuffle(tsv_data)
return tsv_data
def get_tsv_from_vg_grounding(regions, data, start_id, dataset_name='visual_genome', task_type='visual_grounding', convert_images=True, split='train', thresh=16384):
original_data = json.load(open(regions,'r'))
image_data = json.load(open(data,'r'))
id_2_imagepath = {}
for d in tqdm(image_data):
id_ = int(d['image'].split('/')[-1].split('.')[0])
id_2_imagepath[id_] = d['image']
tsv_data = []
for d in tqdm(original_data):
img_path = id_2_imagepath[d['id']]
if convert_images:
img = convert_img_to_str(img_path)
else:
img_path = img_path.replace('/data/mshukor/data/', '')
img = img_path
for reg in d['regions']:
width = reg['width']
height = reg['height']
x = reg['x']
y = reg['y']
area = width*height
if area < thresh:
x1, y1, x2, y2 = x, y, x + width, y + height # top left, bottom right
box = '{:.2f},{:.2f},{:.2f},{:.2f}'.format(x1, y1, x2, y2)
sentence = remove_special(reg['phrase'])
t = [start_id, img, sentence, '', box, '', dataset_name, task_type]
tsv_data.append(t)
start_id+=1
shuffle(tsv_data)
return tsv_data
def get_tsv_from_refcoco(ref_path, instances_path, start_id, dataset_name='refcoco_train', task_type='visual_grounding', convert_images=True, split='train'):
refs = pickle.load(open(ref_path, 'rb'))
instances = json.load(open(instances_path,'r'))
id_to_annot = {}
for annot in tqdm(instances['annotations']):
id_to_annot[annot['id']] = annot
id_to_images = {}
for annot in tqdm(instances['images']):
id_to_images[annot['id']] = annot
tsv_data = []
for ref in tqdm(refs):
ref_split = ref['split']
if ref_split == split:
image_id = ref['image_id']
file_name = id_to_images[ref['image_id']]['file_name']
if ref_split == 'train':
file_name = os.path.join('coco/train2014', file_name)
if convert_images:
img_path = os.path.join('/data/mshukor/data/', file_name)
img = convert_img_to_str(img_path)
else:
img_path = file_name.replace('/data/mshukor/data/', '')
img = img_path
ann_id = ref['ann_id']
annot = id_to_annot[ann_id]
bbox = annot['bbox'] # x,y,w,h bottom left
x1, y1, x2, y2 = bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3] # top left, bottom right
box = '{:.2f},{:.2f},{:.2f},{:.2f}'.format(x1, y1, x2, y2)
for sent in ref['sentences']:
sentence = remove_special(sent['sent'])
# [id, image, 'third book starting from left', '', '29.1,11.72,66.81,343.41', '', 'refcoco_train', 'visual_grounding']
t = [start_id, img, sentence, '', box, '', dataset_name, task_type]
tsv_data.append(t)
start_id+=1
shuffle(tsv_data)
return tsv_data
def get_tsv_data_from_jsons(datasets, start_id, task_types, image_root=None, convert_images=True):
tsvs = []
for (original_data_path, task_type) in zip(datasets, task_types):
print(task_type)
if task_type == 'caption':
dataset_name = original_data_path.split('/')[-1].split('.')[0]
print(dataset_name,'start_id:', start_id)
original_data = json.load(open(original_data_path,'r'))
tsvs += get_tsv_caption_data_from_json(original_data=original_data, start_id=start_id, dataset_name=dataset_name, task_type=task_type, convert_images=convert_images)
elif task_type == 'qa':
dataset_name = original_data_path.split('/')[-1].split('.')[0]
print(dataset_name,'start_id:', start_id)
original_data = json.load(open(original_data_path,'r'))
tsvs += get_tsv_vqa_data_from_json(original_data=original_data, start_id=start_id, dataset_name=dataset_name, task_type=task_type, image_root=image_root, convert_images=convert_images)
elif task_type == 'visual_grounding':
dataset_name = original_data_path[0].split('/')[-2].replace('+', '')+'_train'
print(dataset_name,'start_id:', start_id)
if dataset_name == 'refcoco_train':
tsvs += get_tsv_from_refcoco(original_data_path[0], original_data_path[1], start_id, dataset_name=dataset_name, task_type=task_type, convert_images=convert_images, split='train')
elif task_type == 'detection':
dataset_name = original_data_path[0]
if dataset_name == 'vg':
tsvs+= get_tsv_from_vg_detection(original_data_path[1], original_data_path[2], start_id, convert_images=convert_images, split='train')
elif dataset_name == 'coco':
tsvs+= get_tsv_from_coco_detection(original_data_path[1], start_id, convert_images=convert_images, split='train')
else:
raise
start_id = tsvs[-1][0] + 1
shuffle(tsvs)
return tsvs
def create_imagenet_txt_files(path_data, output_path, dataset='imagenet'):
data = []
# start_id = 0
for root, dirs, files, in os.walk(path_data):
for d in tqdm(dirs):
dir_path = os.path.join(root, d)
for _, _, dir_files in os.walk(dir_path):
for f in dir_files:
file_path = os.path.join(dir_path, f)
if dataset == 'imagenet21k':
file_path = '/'.join(file_path.split('/')[-3:])
elif dataset == 'openimages':
file_path = '/'.join(file_path.split('/')[-4:])
elif dataset == 'yfcc':
file_path = '/'.join(file_path.split('/')[-5:])
elif dataset == 'imagenet':
file_path = '/'.join(file_path.split('/')[-5:])
else:
file_path = '/'.join(file_path.split('/')[-4:])
image_id = f.split('.')[0]
tmp = [image_id, file_path]
data.append(tmp)
# start_id+=1
with open(output_path, 'w', newline='') as f_output:
csv_output = csv.writer(f_output, delimiter='\t')
for t in tqdm(data):
csv_output.writerow(t)
def get_tsv_from_vg_detection(instances_path, path_images, start_id, convert_images=True, split='train'):
print('start id:', start_id)
instances = json.load(open(instances_path,'r'))
id_to_objects = {}
for d in instances:
id_to_objects[d['id']] = d
id_to_image_path = {}
for root, dirs, files, in os.walk(path_images):
for d in dirs:
dir_path = os.path.join(root, d)
for _, _, dir_files in os.walk(dir_path):
for f in dir_files:
file_path = os.path.join(dir_path, f)
file_path = '/'.join(file_path.split('/')[-4:])
image_id = f.split('.')[0]
id_to_image_path[image_id] = file_path
tsv_data = []
missied = []
for ref in tqdm(id_to_image_path.keys()):
ref_split = split
image_id = ref
file_name = id_to_image_path[image_id]
if convert_images:
img_path = os.path.join('/data/mshukor/data/', file_name)
img = convert_img_to_str(img_path)
else:
img_path = file_name.replace('/data/mshukor/data/', '')
img = img_path
if int(image_id) in id_to_objects:
objects = id_to_objects[int(image_id)]['objects']
else:
missied.append(image_id)
continue
if len(objects) == 0:
missied.append(image_id)
continue
areas = []
detections = []
for annot in objects:
x,y,w,h = annot['x'], annot['y'], annot['w'], annot['h'] # x,y,w,h bottom left
area = w*h
x1, y1, x2, y2 = x, y, x + w, y + h # top left, bottom right
x1 = max(0, x1)
x2 = max(0, x2)
category = ','.join(remove_special(annot['names'])).replace('\x00','')
object_id = annot['id']
tmp = '{:.3f},{:.3f},{:.3f},{:.3f},{},{}'.format(x1, y1, x2, y2, object_id, category)
detections.append(tmp)
areas.append(area)
sorted_indices = sorted(range(len(areas)), key=lambda k: areas[k], reverse=True)
detections = [detections[k] for k in sorted_indices]
detections = '&&'.join(detections)
t = [start_id, img, detections]
tsv_data.append(t)
start_id+=1
print('missed images:', len(missied))
shuffle(tsv_data)
return tsv_data
def get_tsv_from_coco_detection(instances_path, start_id, convert_images=True, split='train'):
print('start id:', start_id)
instances = json.load(open(instances_path,'r'))
imgid_to_annot = {}
for annot in tqdm(instances['annotations']):
if annot['image_id'] not in imgid_to_annot:
imgid_to_annot[annot['image_id']] = [annot]
else:
imgid_to_annot[annot['image_id']].append(annot)
id_to_category = {}
for annot in tqdm(instances['categories']):
id_to_category[annot['id']] = annot['name']
tsv_data = []
missied = []
for ref in tqdm(instances['images']):
ref_split = split
image_id = ref['id']
file_name = ref['file_name']
if ref_split == 'train':
file_name = os.path.join('coco/train2014', file_name)
if convert_images:
img_path = os.path.join('/data/mshukor/data/', file_name)
img = convert_img_to_str(img_path)
else:
img_path = file_name.replace('/data/mshukor/data/', '')
img = img_path
# ann_id = ref['id']
# annot = id_to_annot[ann_id]
if image_id not in imgid_to_annot:
missied.append(image_id)
continue
annots = imgid_to_annot[image_id]
detections = []
areas = []
for annot in annots:
bbox = annot['bbox'] # x,y,w,h bottom left
area = bbox[2]*bbox[3]
x1, y1, x2, y2 = bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3] # top left, bottom right
# box = '{:.3f},{:.3f},{:.3f},{:.3f}'.format(x1, y1, x2, y2)
object_id = annot['category_id']
category = remove_special(id_to_category[object_id])
tmp = '{:.3f},{:.3f},{:.3f},{:.3f},{},{}'.format(x1, y1, x2, y2, object_id, category)
areas.append(area)
detections.append(tmp)
sorted_indices = sorted(range(len(areas)), key=lambda k: areas[k], reverse=True)
detections = [detections[k] for k in sorted_indices]
detections = '&&'.join(detections)
t = [start_id, img, detections]
tsv_data.append(t)
start_id+=1
shuffle(tsv_data)
return tsv_data
def imagepath_to_image_size(img_path, dir_path):
img_path = os.path.join(dir_path, img_path)
w, h = Image.open(img_path).size
# imageid_to_meta_dict[img_path] = [w, h]
return w, h, img_path
def save_imageid_to_meta_dict(path_images, output_path, mp=False, num_workers=1):
id_to_image_path = {}
for file in os.listdir(path_images):
file_path = os.path.join(path_images, file)
file_path = '/'.join(file_path.split('/')[-4:])
image_id = file.split('.')[0]
id_to_image_path[image_id] = file
imageid_to_meta_dict = {}
if mp:
iterable = list(id_to_image_path.values())
mp_func = partial(imagepath_to_image_size, dir_path=path_images,)
num_cores = cpu_count()
num_workers = num_workers
print(f"Begin with {num_cores}-core logical processor, {num_workers} workers")
with Pool(num_workers) as pool, tqdm(total=len(iterable), desc="running") as pbar:
for idx, res in enumerate(pool.imap_unordered(mp_func, iterable, chunksize=32)):
w, h, img_path = res
imageid_to_meta_dict[img_path] = [w, h]
pbar.update(1)
else:
for k, p in tqdm(id_to_image_path.items()):
w, h, img_path = imagepath_to_image_size(path_images, p)
imageid_to_meta_dict[img_path] = [w, h]
print(len(imageid_to_meta_dict))
with open(output_path, 'w') as f:
json.dump(imageid_to_meta_dict, f)
return imageid_to_meta_dict
def get_tsv_from_openimages_detection(instances_path, path_images, class_path,
start_id, convert_images=False, split='train', image_root='/gpfsdswork/dataset', image_meta=None):
id_to_image_path = {}
# for root, dirs, files, in os.walk(path_images):
# for d in dirs:
# dir_path = os.path.join(root, d)
# print(dir_path)
# for _, _, dir_files in os.walk(dir_path):
# for f in dir_files:
# print(f)
# file_path = os.path.join(dir_path, f)
# file_path = '/'.join(file_path.split('/')[-4:])
# image_id = f.split('.')[0]
# id_to_image_path[image_id] = file_path
for file in os.listdir(path_images):
file_path = os.path.join(path_images, file)
file_path = '/'.join(file_path.split('/')[-4:])
image_id = file.split('.')[0]
id_to_image_path[image_id] = file
def imagepath_to_image_size(img_path):
w, h = Image.open(img_path).size
return w, h
id_to_annot = {}
with open(instances_path) as file:
tsv_file = csv.reader(file, delimiter='\t')
for i, line in tqdm(enumerate(tsv_file)):
if i == 0:
continue # skip header
img_id = line[0].split(',')[0]
if img_id in id_to_annot:
id_to_annot[img_id].append(line)
else:
id_to_annot[img_id] = [line]
classid_to_class = {}
with open(class_path) as file:
tsv_file = csv.reader(file, delimiter=',')
for i, line in tqdm(enumerate(tsv_file)):
classid_to_class[line[0]] = line[1]
if image_meta is not None:
image_size = json.load(open(image_meta, 'r'))
else:
image_size = None
tsv_data = []
for i, img_id in tqdm(enumerate(id_to_annot.keys())):
annots = id_to_annot[img_id]
if img_id in id_to_image_path:
img_path = id_to_image_path[img_id]
orig_img_path = os.path.join(path_images, img_path)
save_img_path = os.path.join(image_root, img_path)
if image_size is None:
w, h = imagepath_to_image_size(orig_img_path)
else:
w, h = image_size[orig_img_path]
if convert_images:
img = convert_img_to_str(orig_img_path)
else:
img = save_img_path
areas = []
detections = []
for d in annots:
d = d[0].split(',')
x1, x2, y1, y2 = d[4:8]
x1, x2, y1, y2 = float(x1), float(x2), float(y1), float(y2)
x1, x2, y1, y2 = x1*w, x2*w, y1*h, y2*h
box_w, box_h = x2 - x1, y2 - y1
area = box_w*box_h
areas.append(area)
object_id = d[2]
category = remove_special(classid_to_class[object_id])
tmp = '{:.3f},{:.3f},{:.3f},{:.3f},{},{}'.format(x1, y1, x2, y2, object_id, category)
detections.append(tmp)
sorted_indices = sorted(range(len(areas)), key=lambda k: areas[k], reverse=True)
detections = [detections[k] for k in sorted_indices]
detections = '&&'.join(detections)
t = [start_id, img, detections]
tsv_data.append(t)
start_id+=1
shuffle(tsv_data)
return tsv_data
def replace_image_id_by_path(input_tsv, output_tsv, mapping_file):
selected_cols='0,1,2'
data = []
selected_col_ids = [int(col_id) for col_id in selected_cols.split(",")]
with open(input_tsv) as file:
tsv_file = csv.reader(file, delimiter='\t')
for line in tqdm(tsv_file):
d = [line[i] for i in selected_col_ids]
data.append(d)
im_id_to_path = {}
with open(mapping_file) as file:
tsv_file = csv.reader(file, delimiter='\t')
for line in tqdm(tsv_file):
d = [line[i] for i in [0, 1]]
im_id_to_path[d[0]] = d[1]
for d in tqdm(data):
im_id = d[1].split('/')[-1].split('.')[0]
im_path = im_id_to_path[im_id]
d[1] = im_path
with open(output_tsv, 'w', newline='') as f_output:
csv_output = csv.writer(f_output, delimiter='\t')
for t in tqdm(data):
csv_output.writerow(t)
return data
####3 video
def get_tsv_msrvtt_vqa_data_from_json(original_data, start_id, image_root=None, convert_images=False):
tsv_data = []
for i, d in tqdm(enumerate(original_data)):
question = remove_special(d['question'])+'?'
img_path = d['video']
img_id = img_path.split('.')[0]
if image_root is not None:
img_path = os.path.join(image_root, img_path)
if convert_images:
img = convert_img_to_str(img_path)
else:
img_path = img_path.replace('/data/mshukor/data/', '')
img = img_path
answer = remove_special(d['answer'])
conf = 1.0
ans = "{:.1f}".format(conf)+'|!+'+answer
t = [start_id, img_id, question, ans, '', img]
tsv_data.append(t)
start_id+=1
shuffle(tsv_data)
return tsv_data
def get_tsv_msrvtt_caption_data_from_json(original_data, start_id, image_root=None, convert_images=False):
tsv_data = []
for i, d in tqdm(enumerate(original_data)):
caption = d['caption']
if isinstance(caption, list):
cs = [remove_special(c) for c in caption]
caption = '&&'.join(cs)
else:
caption = remove_special(caption)
img_path = d['video']
img_id = img_path.split('.')[0]
if image_root is not None:
img_path = os.path.join(image_root, img_path)
if convert_images:
img = convert_img_to_str(img_path)
else:
img_path = img_path.replace('/data/mshukor/data/', '')
img = img_path
t = [start_id, img_id, caption, '', img]
tsv_data.append(t)
start_id+=1
shuffle(tsv_data)
return tsv_data
######3 Pile
def get_tsv_from_piletext_data(path, output_path, start_id=0, num_max_characters=2500, dataset_names=None, keepspecial=False):
print("consider only", dataset_names)
tsv = []
failed = 0
with open(output_path, 'w', newline='') as f_output:
csv_output = csv.writer(f_output, delimiter='\t')
with open(path, "rb") as f:
for d in tqdm(f):
d_str = d.decode("UTF-8")
d_dict = ast.literal_eval(d_str)
data_name = d_dict['meta']['pile_set_name']
text = d_dict['text'][:num_max_characters]
if dataset_names is not None and data_name in dataset_names:
text = text.replace('\t', ' ').replace("\n", ' ').replace('\"', '')
if not keepspecial:
text = remove_special(text)
item = [start_id, text]
try:
csv_output.writerow(item)
except: # (UnicodeEncodeError,SyntaxError)
failed+=1
continue
start_id+=1
tsv.append(item)
print("len", len(tsv), "failed", failed)
return tsv
def save_pile_tsvs(path, output_path, dataset_names, dir_names=None, keepspecial=False, num_max_characters=1500, prefix=''):
print('prepare:', dir_names)
for filename in os.listdir(path):
if dir_names is not None and filename in dir_names:
input_path = os.path.join(path, filename)
if 'jsonl' in filename:
output_file_name = filename.split('.')[0]+prefix+'_pile.tsv'
output_file_name = os.path.join(output_path, output_file_name)
print("creating:", output_file_name, "from", input_path)
tsv = get_tsv_from_piletext_data(input_path, output_file_name, start_id=0, num_max_characters=num_max_characters,
dataset_names=dataset_names, keepspecial=keepspecial)
return tsv
def add_pile_tsvs(path, output_path='pile_all.tsv', key='pile.tsv'):
start_id = 0
with open(output_path, 'w', newline='') as f_output:
csv_output = csv.writer(f_output, delimiter='\t')
for filename in os.listdir(path):
input_path = os.path.join(path, filename)
if key in filename:
with open(input_path) as file:
tsv_file = csv.reader((line.replace('\0','') for line in file), delimiter='\t')
for line in tqdm(tsv_file):
line[0] = start_id
csv_output.writerow(line)
start_id+=1
print('start id', line[0])
# return tsv |