File size: 6,602 Bytes
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# https://github.com/kenshohara/video-classification-3d-cnn-pytorch
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import math
from functools import partial

__all__ = ['ResNeXt', 'resnet50', 'resnet101']


def conv3x3x3(in_planes, out_planes, stride=1):
    # 3x3x3 convolution with padding
    return nn.Conv3d(in_planes, out_planes, kernel_size=3,
                     stride=stride, padding=1, bias=False)


def downsample_basic_block(x, planes, stride):
    out = F.avg_pool3d(x, kernel_size=1, stride=stride)
    zero_pads = torch.Tensor(out.size(0), planes - out.size(1),
                             out.size(2), out.size(3),
                             out.size(4)).zero_()
    if isinstance(out.data, torch.cuda.FloatTensor):
        zero_pads = zero_pads.cuda()

    out = Variable(torch.cat([out.data, zero_pads], dim=1))

    return out


class ResNeXtBottleneck(nn.Module):
    expansion = 2

    def __init__(self, inplanes, planes, cardinality, stride=1, downsample=None, norm_layer=nn.BatchNorm3d):
        super(ResNeXtBottleneck, self).__init__()
        mid_planes = cardinality * int(planes / 32)
        self.conv1 = nn.Conv3d(inplanes, mid_planes, kernel_size=1, bias=False)
        self.bn1 = norm_layer(mid_planes)
        self.conv2 = nn.Conv3d(mid_planes, mid_planes, kernel_size=3, stride=stride,
                               padding=1, groups=cardinality, bias=False)
        self.bn2 = norm_layer(mid_planes)
        self.conv3 = nn.Conv3d(mid_planes, planes * self.expansion, kernel_size=1, bias=False)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class ResNeXt3D(nn.Module):

    def __init__(self, block, layers, sample_size=16, sample_duration=112, shortcut_type='B', cardinality=32, num_classes=400, last_fc=True, norm_layer=None):
        self.last_fc = last_fc

        self.inplanes = 64
        super(ResNeXt3D, self).__init__()
        self.conv1 = nn.Conv3d(3, 64, kernel_size=7, stride=(1, 2, 2),
                               padding=(3, 3, 3), bias=False)
        
        if norm_layer is None:
            norm_layer = nn.BatchNorm3d

        print("use bn:", norm_layer)
        self.bn1 = norm_layer(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
        self.layer1 = self._make_layer(block, 128, layers[0], shortcut_type, cardinality, norm_layer=norm_layer)
        self.layer2 = self._make_layer(block, 256, layers[1], shortcut_type, cardinality, stride=2, norm_layer=norm_layer)
        self.layer3 = self._make_layer(block, 512, layers[2], shortcut_type, cardinality, stride=2, norm_layer=norm_layer)
        if len(layers) > 3:
            self.layer4 = self._make_layer(block, 1024, layers[3], shortcut_type, cardinality, stride=2, norm_layer=norm_layer)
            self.all_layers = True
        else:
            self.all_layers = False
        last_duration = math.ceil(sample_duration / 16)
        last_size = math.ceil(sample_size / 32)
        self.avgpool = nn.AvgPool3d((last_duration, last_size, last_size), stride=1)
        # self.fc = nn.Linear(cardinality * 32 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv3d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, norm_layer):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, shortcut_type, cardinality, stride=1, norm_layer=nn.BatchNorm3d):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            if shortcut_type == 'A':
                downsample = partial(downsample_basic_block,
                                     planes=planes * block.expansion,
                                     stride=stride)
            else:
                downsample = nn.Sequential(
                    nn.Conv3d(self.inplanes, planes * block.expansion,
                              kernel_size=1, stride=stride, bias=False),
                    norm_layer(planes * block.expansion)
                )

        layers = []
        layers.append(block(self.inplanes, planes, cardinality, stride, downsample, norm_layer=norm_layer))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, cardinality, norm_layer=norm_layer))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        if self.all_layers:
            x = self.layer4(x)

        # x = self.avgpool(x)

        # x = x.view(x.size(0), -1)
        # if self.last_fc:
        #     x = self.fc(x)

        return x, x

def get_fine_tuning_parameters(model, ft_begin_index):
    if ft_begin_index == 0:
        return model.parameters()

    ft_module_names = []
    for i in range(ft_begin_index, 5):
        ft_module_names.append('layer{}'.format(ft_begin_index))
    ft_module_names.append('fc')

    parameters = []
    for k, v in model.named_parameters():
        for ft_module in ft_module_names:
            if ft_module in k:
                parameters.append({'params': v})
                break
        else:
            parameters.append({'params': v, 'lr': 0.0})

    return parameters

def resnet50(**kwargs):
    """Constructs a ResNet-50 model.
    """
    model = ResNeXt3D(ResNeXtBottleneck, [3, 4, 6, 3], **kwargs)
    return model

def resnet101(**kwargs):
    """Constructs a ResNet-101 model.
    """
    model = ResNeXt3D(ResNeXtBottleneck, [3, 4, 23, 3], **kwargs)
    return model

def resnet152(**kwargs):
    """Constructs a ResNet-101 model.
    """
    model = ResNeXt3D(ResNeXtBottleneck, [3, 8, 36, 3], **kwargs)
    return model