File size: 9,888 Bytes
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# Modified from OFA code.
# Copyright 2022 The OFA-Sys Team. 
# All rights reserved.
# This source code is licensed under the Apache 2.0 license 
# found in the LICENSE file in the root directory.

from io import BytesIO

import logging
import warnings
 
import numpy as np
import torch
from torchvision import transforms

from PIL import Image, ImageFile

from data import data_utils
from data.ofa_dataset import OFADataset

ImageFile.LOAD_TRUNCATED_IMAGES = True
ImageFile.MAX_IMAGE_PIXELS = None
Image.MAX_IMAGE_PIXELS = None

logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)


import os 

from data.video_utils import VIDEO_READER_FUNCS


IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)


def collate(samples, pad_idx, eos_idx):
    if len(samples) == 0:
        return {}

    def merge(key):
        return data_utils.collate_tokens(
            [s[key] for s in samples],
            pad_idx,
            eos_idx=eos_idx,
        )

    id = np.array([s["id"] for s in samples])
    src_tokens = merge("source")
    src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])

    patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0)
    patch_masks = torch.cat([sample['patch_mask'] for sample in samples])

    patch_videos = torch.stack([sample['patch_video'] for sample in samples], dim=0)
    patch_types = torch.cat([sample['patch_type'] for sample in samples])

    conf = None
    if samples[0].get("conf", None) is not None:
        conf = torch.cat([s['conf'] for s in samples], dim=0)

    ref_dict = None
    if samples[0].get("ref_dict", None) is not None:
        ref_dict = np.array([s['ref_dict'] for s in samples])

    constraint_masks = None
    if samples[0].get("constraint_mask", None) is not None:
        constraint_masks = merge("constraint_mask")

    decoder_prompts = None
    if samples[0].get("decoder_prompt", None) is not None:
        decoder_prompts = np.array([s['decoder_prompt'].tolist() for s in samples])

    prefix_tokens = None
    if samples[0].get("decoder_prompt", None) is not None:
        prefix_tokens = merge("decoder_prompt")
        prefix_tokens = prefix_tokens[:, 1:]

    prev_output_tokens = None
    target = None
    if samples[0].get("target", None) is not None:
        target = merge("target")
        tgt_lengths = torch.LongTensor(
            [s["target"].ne(pad_idx).long().sum() for s in samples]
        )
        ntokens = tgt_lengths.sum().item()

        if samples[0].get("prev_output_tokens", None) is not None:
            prev_output_tokens = merge("prev_output_tokens")
    else:
        ntokens = src_lengths.sum().item()

    batch = {
        "id": id,
        "nsentences": len(samples),
        "ntokens": ntokens,
        "net_input": {
            "src_tokens": src_tokens,
            "src_lengths": src_lengths,
            "patch_images": patch_images,
            "patch_masks": patch_masks,
            "prev_output_tokens": prev_output_tokens,
            "patch_videos": patch_videos,
            "patch_types": patch_types,
        },
        "conf": conf,
        "ref_dict": ref_dict,
        "constraint_masks": constraint_masks,
        "decoder_prompts": decoder_prompts,
        "target": target,
        "prefix_tokens": prefix_tokens
    }

    return batch


class VidVqaGenDataset(OFADataset):
    def __init__(
        self,
        split,
        dataset,
        bpe,
        src_dict,
        tgt_dict=None,
        max_src_length=128,
        max_object_length=30,
        max_tgt_length=30,
        patch_image_size=224,
        add_object=False,
        constraint_trie=None,
        imagenet_default_mean_and_std=False,
        prompt_type="none",
        image_dir='/gpfsscratch/rech/dyf/ugz83ue/data', 
        patch_frame_size=224,
        num_frames=4,
        sample_type='rand',
        use_dataaug=False,
    ):
        super().__init__(split, dataset, bpe, src_dict, tgt_dict)
        self.max_src_length = max_src_length
        self.max_object_length = max_object_length
        self.max_tgt_length = max_tgt_length
        self.patch_image_size = patch_image_size

        self.add_object = add_object
        self.constraint_trie = constraint_trie
        self.prompt_type = prompt_type

        self.image_dir = image_dir

        if imagenet_default_mean_and_std:
            mean = IMAGENET_DEFAULT_MEAN
            std = IMAGENET_DEFAULT_STD
        else:
            mean = [0.5, 0.5, 0.5]
            std = [0.5, 0.5, 0.5]

        self.split = split
        type_transform = transforms.Lambda(lambda x: x.float().div(255.0))
        
        if self.split != 'train' or not use_dataaug:
            self.patch_video_resize_transform = transforms.Compose([
                    transforms.CenterCrop(patch_frame_size),
                    type_transform, 
                    transforms.Normalize(mean=mean, std=std),
                ])
            logger.info("val split, do not use random augmentation.")
        else:
            aug_transform = transforms.RandAugment()
            self.patch_video_resize_transform = transforms.Compose(
                [
                    aug_transform,
                    transforms.RandomResizedCrop(
                        patch_frame_size,
                        scale=(0.5, 1.0),
                        interpolation=transforms.InterpolationMode.BICUBIC,
                    ),
                    transforms.RandomHorizontalFlip(),
                    type_transform,
                    transforms.Normalize(mean=mean, std=std),
                ]
            )


            logger.info("train split, use random augmentation.")

        # video
        self.num_frames =  num_frames
        self.sample_type = sample_type
        self.video_reader = VIDEO_READER_FUNCS['decord'] 
        self.max_num_frames = num_frames


    def __getitem__(self, index):
        item = self.dataset[index]
        if len(item) == 5:
            uniq_id, image, question, ref, predict_objects = item
        else:
            uniq_id, image, question, ref, predict_objects, caption = item

        # video 
        image_path = os.path.join(self.image_dir, image)
        data_path = image_path
        max_num_frames = self.max_num_frames 
        frames, frame_indices, video_duration = self.video_reader(
            data_path, self.num_frames, self.sample_type, max_num_frames=max_num_frames
        )



        patch_video = self.patch_video_resize_transform(frames)

        patch_video = patch_video.permute(1, 0, 2, 3) # -> (C, T, h, w)



        patch_image = torch.zeros((3, self.patch_image_size, self.patch_image_size))
        patch_type = torch.tensor([1])
        patch_mask = torch.tensor([True])

        question = self.pre_question(question, self.max_src_length)
        question = question + '?' if not question.endswith('?') else question
        src_item = self.encode_text(' {}'.format(question))

        ref_dict = {item.split('|!+')[1]: float(item.split('|!+')[0]) for item in ref.split('&&')}
        answer = max(ref_dict, key=ref_dict.get)
        conf = torch.tensor([ref_dict[answer]])
        tgt_item = self.encode_text(" {}".format(answer))

        if self.add_object and predict_objects is not None:
            predict_object_seq = ' '.join(predict_objects.strip().split('&&')[:self.max_object_length])
            predict_object_item = self.encode_text(" object: {}".format(predict_object_seq))
            src_item = torch.cat([src_item, predict_object_item])

        src_item = torch.cat([self.bos_item, src_item, self.eos_item])
        if self.prompt_type == 'none':
            prev_output_item = torch.cat([self.bos_item, tgt_item])
            target_item = torch.cat([prev_output_item[1:], self.eos_item])
            decoder_prompt = self.bos_item
        elif self.prompt_type == 'src':
            prev_output_item = torch.cat([src_item, tgt_item])
            target_item = torch.cat([prev_output_item[1:], self.eos_item])
            decoder_prompt = src_item
        elif self.prompt_type == 'prev_output':
            prev_output_item = torch.cat([src_item[:-1], tgt_item])
            target_item = torch.cat([prev_output_item[1:], self.eos_item])
            decoder_prompt = src_item[:-1]
        else:
            raise NotImplementedError
        target_item[:-len(tgt_item)-1] = self.tgt_dict.pad()


        example = {
            "id": uniq_id,
            "source": src_item,
            "patch_image": patch_image,
            "patch_video": patch_video,
            "patch_mask": patch_mask,
            "target": target_item,
            "prev_output_tokens": prev_output_item,
            "decoder_prompt": decoder_prompt,
            "ref_dict": ref_dict,
            "conf": conf,
            "patch_type": patch_type,
        }

        if self.constraint_trie is not None:
            constraint_mask = torch.zeros((len(target_item), len(self.tgt_dict))).bool()
            start_idx = len(target_item) - len(tgt_item) - 1
            for i in range(len(target_item)-len(tgt_item)-1, len(target_item)):
                constraint_prefix_token = [self.tgt_dict.bos()] + target_item[start_idx:i].tolist()
                constraint_nodes = self.constraint_trie.get_next_layer(constraint_prefix_token)
                constraint_mask[i][constraint_nodes] = True
            example["constraint_mask"] = constraint_mask

        return example

    def collater(self, samples, pad_to_length=None):
        """Merge a list of samples to form a mini-batch.
        Args:
            samples (List[dict]): samples to collate
        Returns:
            dict: a mini-batch containing the data of the task
        """
        return collate(samples, pad_idx=self.pad, eos_idx=self.eos)