File size: 5,362 Bytes
49c6db7
 
8786ac3
49c6db7
 
 
f0821bf
 
44c9541
49c6db7
 
f16ef34
49c6db7
 
 
 
 
 
 
 
 
 
 
 
 
 
f0821bf
49c6db7
 
 
 
 
 
 
 
f0821bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c034f55
 
 
 
 
 
 
 
 
 
 
 
 
736285e
c034f55
 
 
49c6db7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32b0ba4
49c6db7
 
 
 
 
 
 
 
 
 
 
 
 
bce0fa8
86bfbdc
 
 
 
bce0fa8
ded4361
958ea27
 
86bfbdc
 
49c6db7
 
 
 
958ea27
49c6db7
 
 
958ea27
5fa8922
 
fc03022
 
 
49c6db7
 
2c27168
 
 
 
 
 
 
49c6db7
2c27168
 
 
 
77e473c
 
 
2c27168
6ba53a6
fc03022
c034f55
fc03022
6ba53a6
fc03022
a3dc09f
fc03022
a3dc09f
2c27168
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import numpy as np
import gradio as gr
import spaces
import cv2
from cellpose import models
from matplotlib.colors import hsv_to_rgb
import matplotlib.pyplot as plt
import os, io, base64
from PIL import Image 

try:
    model = models.CellposeModel(gpu=True, pretrained_model="cyto3")
except Exception as e:
    print(f"Error loading model: {e}")
    exit(1)

def plot_flows(y):
    Y = (np.clip(normalize99(y[0][0]),0,1) - 0.5) * 2
    X = (np.clip(normalize99(y[1][0]),0,1) - 0.5) * 2
    H = (np.arctan2(Y, X) + np.pi) / (2*np.pi)
    S = normalize99(y[0][0]**2 + y[1][0]**2)
    HSV = np.concatenate((H[:,:,np.newaxis], S[:,:,np.newaxis], S[:,:,np.newaxis]), axis=-1)
    HSV = np.clip(HSV, 0.0, 1.0)
    flow = (hsv_to_rgb(HSV) * 255).astype(np.uint8)
    return flow

def plot_outlines(img, masks):
    outpix = []
    contours, hierarchy = cv2.findContours(masks.astype(np.int32), mode=cv2.RETR_FLOODFILL, method=cv2.CHAIN_APPROX_SIMPLE)
    for c in range(len(contours)):
        pix = contours[c].astype(int).squeeze()
        if len(pix)>4:
            peri = cv2.arcLength(contours[c], True)
            approx = cv2.approxPolyDP(contours[c], 0.001, True)[:,0,:]
            outpix.append(approx)
    
    figsize = (6,6)
    if img.shape[0]>img.shape[1]:
        figsize = (6*img.shape[1]/img.shape[0], 6)
    else:
        figsize = (6, 6*img.shape[0]/img.shape[1])
    fig = plt.figure(figsize=figsize, facecolor='k')
    ax = fig.add_axes([0.0,0.0,1,1])
    ax.set_xlim([0,img.shape[1]])
    ax.set_ylim([0,img.shape[0]])
    ax.imshow(img[::-1], origin='upper')
    if outpix is not None:
        for o in outpix:
            ax.plot(o[:,0], img.shape[0]-o[:,1], color=[1,0,0], lw=1)
    ax.axis('off')
    
    #bytes_image = io.BytesIO()
    #plt.savefig(bytes_image, format='png', facecolor=fig.get_facecolor(), edgecolor='none')
    #bytes_image.seek(0)
    #img_arr = np.frombuffer(bytes_image.getvalue(), dtype=np.uint8)
    #bytes_image.close()
    #img = cv2.imdecode(img_arr, 1)
    #img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    #del bytes_image
    #fig.clf()
    #plt.close(fig)

    buf = io.BytesIO()
    fig.savefig(buf, bbox_inches='tight')
    buf.seek(0)
    output_pil_img = Image.open(buf)
    return output_pil_img

def plot_overlay(img, masks):
    img = normalize99(img.astype(np.float32).mean(axis=-1))
    img -= img.min()
    img /= img.max()
    HSV = np.zeros((img.shape[0], img.shape[1], 3), np.float32)
    HSV[:,:,2] = np.clip(img*1.5, 0, 1.0)
    for n in range(int(masks.max())):
        ipix = (masks==n+1).nonzero()
        HSV[ipix[0],ipix[1],0] = np.random.rand()
        HSV[ipix[0],ipix[1],1] = 1.0
    RGB = (hsv_to_rgb(HSV) * 255).astype(np.uint8)
    return RGB

def normalize99(img):
    X = img.copy()
    X = (X - np.percentile(X, 1)) / (np.percentile(X, 99) - np.percentile(X, 1))
    return X

def image_resize(img, resize=400):
    ny,nx = img.shape[:2]
    if np.array(img.shape).max() > resize:
        if ny>nx:
            nx = int(nx/ny * resize)
            ny = resize
        else:
            ny = int(ny/nx * resize)
            nx = resize
        shape = (nx,ny)
        img = cv2.resize(img, shape)
    img = img.astype(np.uint8)
    return img


#@spaces.GPU(duration=10)
#def run_model_gpu(model, img):
#    masks, flows, _ = model.eval(img, channels=[0,0])
 #   return masks, flows

@spaces.GPU(duration=10)
def cellpose_segment(img_input):
    img = image_resize(img_input)
    #masks, flows = run_model_gpu(model, img)
    masks, flows, _ = model.eval(img, channels=[0,0])
    flows = flows[0]
    # masks = np.zeros(img.shape[:2])
    # flows = np.zeros_like(img)
    target_size = (img_input.shape[1], img_input.shape[0])
    if (target_size[0]!=img.shape[1] or target_size[1]!=img.shape[0]):
        # scale it back to keep the orignal size
        masks = cv2.resize(masks.astype('uint16'), target_size, interpolation=cv2.INTER_NEAREST).astype('uint16')
        flows = cv2.resize(flows.astype('float32'), target_size).astype('uint8')
    
    outpix = plot_outlines(img_input, masks)
    overlay = plot_overlay(img_input, masks)

    iperm = np.random.permutation(np.max(masks.flatten()).astype('int')+1)
    return outpix, overlay, flows, iperm[masks]

# Gradio Interface
#iface = gr.Interface(
#    fn=cellpose_segment, 
#    inputs="image", 
#    outputs=["image", "image", "image", "image"],
#    title="cellpose segmentation",
#    description="upload an image, then cellpose will segment it at a max size of 400x400 (for full functionality, 'pip install cellpose' locally)"
#)

with gr.Blocks(title = "Hello", 
               css=".gradio-container {background:purple;}") as demo:

    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(label = "Input image", type = "numpy")
            send_btn = gr.Button("Run Cellpose-SAM")

        with gr.Column(scale=1):            
            img_overlay = gr.Image(label = "Output image", type = "numpy")
            img_outlines = gr.Image(label = "Output image", type = "pil")            
            flows = gr.Image(label = "Output image", type = "numpy")
            masks = gr.Image(label = "Output image", type = "numpy")
            

    send_btn.click(fn=cellpose_segment, inputs=[input_image], outputs=[img_outlines, img_overlay, flows, masks])

        
    
    

demo.launch()