Commit
·
49c6db7
1
Parent(s):
fa1fd8e
add app
Browse files
app.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import cv2
|
| 5 |
+
from cellpose import models
|
| 6 |
+
from matplotlib.colors import hsv_to_rgb
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
try:
|
| 10 |
+
model = models.CellposeModel(gpu=False, pretrained_model="cyto3")
|
| 11 |
+
except Exception as e:
|
| 12 |
+
print(f"Error loading model: {e}")
|
| 13 |
+
exit(1)
|
| 14 |
+
|
| 15 |
+
def plot_flows(y):
|
| 16 |
+
Y = (np.clip(normalize99(y[0][0]),0,1) - 0.5) * 2
|
| 17 |
+
X = (np.clip(normalize99(y[1][0]),0,1) - 0.5) * 2
|
| 18 |
+
H = (np.arctan2(Y, X) + np.pi) / (2*np.pi)
|
| 19 |
+
S = normalize99(y[0][0]**2 + y[1][0]**2)
|
| 20 |
+
HSV = np.concatenate((H[:,:,np.newaxis], S[:,:,np.newaxis], S[:,:,np.newaxis]), axis=-1)
|
| 21 |
+
HSV = np.clip(HSV, 0.0, 1.0)
|
| 22 |
+
flow = (hsv_to_rgb(HSV) * 255).astype(np.uint8)
|
| 23 |
+
return flow
|
| 24 |
+
|
| 25 |
+
def plot_outlines(masks):
|
| 26 |
+
outpix = []
|
| 27 |
+
contours, hierarchy = cv2.findContours(masks.astype(np.int32), mode=cv2.RETR_FLOODFILL, method=cv2.CHAIN_APPROX_SIMPLE)
|
| 28 |
+
for c in range(len(contours)):
|
| 29 |
+
pix = contours[c].astype(int).squeeze()
|
| 30 |
+
if len(pix)>4:
|
| 31 |
+
peri = cv2.arcLength(contours[c], True)
|
| 32 |
+
approx = cv2.approxPolyDP(contours[c], 0.001, True)[:,0,:]
|
| 33 |
+
outpix.append(approx)
|
| 34 |
+
return outpix
|
| 35 |
+
|
| 36 |
+
def plot_overlay(img, masks):
|
| 37 |
+
img = normalize99(img.astype(np.float32).mean(axis=-1))
|
| 38 |
+
img -= img.min()
|
| 39 |
+
img /= img.max()
|
| 40 |
+
HSV = np.zeros((img.shape[0], img.shape[1], 3), np.float32)
|
| 41 |
+
HSV[:,:,2] = np.clip(img*1.5, 0, 1.0)
|
| 42 |
+
for n in range(int(masks.max())):
|
| 43 |
+
ipix = (masks==n+1).nonzero()
|
| 44 |
+
HSV[ipix[0],ipix[1],0] = np.random.rand()
|
| 45 |
+
HSV[ipix[0],ipix[1],1] = 1.0
|
| 46 |
+
RGB = (hsv_to_rgb(HSV) * 255).astype(np.uint8)
|
| 47 |
+
return RGB
|
| 48 |
+
|
| 49 |
+
def normalize99(img):
|
| 50 |
+
X = img.copy()
|
| 51 |
+
X = (X - np.percentile(X, 1)) / (np.percentile(X, 99) - np.percentile(X, 1))
|
| 52 |
+
return X
|
| 53 |
+
|
| 54 |
+
def image_resize(img, resize=224):
|
| 55 |
+
ny,nx = img.shape[:2]
|
| 56 |
+
if np.array(img.shape).max() > resize:
|
| 57 |
+
if ny>nx:
|
| 58 |
+
nx = int(nx/ny * resize)
|
| 59 |
+
ny = resize
|
| 60 |
+
else:
|
| 61 |
+
ny = int(ny/nx * resize)
|
| 62 |
+
nx = resize
|
| 63 |
+
shape = (nx,ny)
|
| 64 |
+
img = cv2.resize(img, shape)
|
| 65 |
+
img = img.astype(np.uint8)
|
| 66 |
+
return img
|
| 67 |
+
|
| 68 |
+
def cellpose_segment(img):
|
| 69 |
+
img_input = image_resize(img)
|
| 70 |
+
masks, flows, _ = model.eval(img_input)
|
| 71 |
+
flows = flows[0]
|
| 72 |
+
# masks = np.zeros(img.shape[:2])
|
| 73 |
+
# flows = np.zeros_like(img)
|
| 74 |
+
target_size = (img_input.shape[1], img_input.shape[0])
|
| 75 |
+
if (target_size[0]!=img.shape[1] and target_size[1]!=img.shape[0]):
|
| 76 |
+
# scale it back to keep the orignal size
|
| 77 |
+
masks = cv2.resize(masks.astype('uint16'), target_size, interpolation=cv2.INTER_NEAREST).astype('uint16')
|
| 78 |
+
flows = cv2.resize(flows.astype('float32'), target_size).astype('uint8')
|
| 79 |
+
|
| 80 |
+
outpix = plot_outlines(masks)
|
| 81 |
+
overlay = plot_overlay(img, masks)
|
| 82 |
+
|
| 83 |
+
return outpix, overlay, flows, masks
|
| 84 |
+
|
| 85 |
+
# Gradio Interface
|
| 86 |
+
iface = gr.Interface(
|
| 87 |
+
fn=cellpose_segment,
|
| 88 |
+
inputs="image",
|
| 89 |
+
outputs=["image", "image", "image", "image"],
|
| 90 |
+
title="cellpose segmentation",
|
| 91 |
+
description="upload an image, then cellpose will segment it at a max size of 224x224"
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
iface.launch()
|