File size: 7,204 Bytes
a83f80b
4f2c346
 
509d266
 
4f2c346
81eed54
8404815
509d266
6671a55
a83f80b
9660558
 
 
 
7c020ac
4f2c346
 
917f1e0
6c5db00
 
 
 
 
 
 
 
ec39d42
6c5db00
 
 
7c020ac
 
9660558
509d266
 
fe7c35d
509d266
 
 
 
9660558
 
 
509d266
 
ec39d42
 
 
 
 
 
 
fe7c35d
 
 
 
 
 
 
 
 
 
 
 
 
81eed54
fe7c35d
81eed54
 
fe7c35d
 
81eed54
fe7c35d
 
 
 
c239d0a
ec39d42
c239d0a
63644af
ec39d42
63644af
c239d0a
 
ec39d42
c239d0a
ec39d42
c239d0a
ec39d42
c239d0a
ec39d42
c239d0a
 
 
 
ec39d42
c239d0a
fe7c35d
 
ec39d42
 
c239d0a
fe7c35d
 
ec39d42
509d266
ec39d42
63644af
c239d0a
509d266
 
 
 
81eed54
 
 
 
 
63644af
 
 
 
 
 
 
 
 
dd21895
 
 
 
 
63644af
dd21895
 
 
 
 
63644af
 
 
509d266
917f1e0
c239d0a
63644af
 
 
 
509d266
 
 
 
837f208
 
 
81eed54
ec39d42
63644af
c239d0a
63644af
 
dd21895
6460d80
63644af
 
 
c239d0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63644af
7c020ac
fe7c35d
213ce70
c239d0a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import gradio as gr
import fasttext

from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer

import numpy as np
import pandas as pd
import torch


id2label = {0: "NEGATIVE", 1: "POSITIVE"}
label2id = {"NEGATIVE": 0, "POSITIVE": 1}


title = "Movie Review Score Discriminator"
description = "It is a program that classifies whether it is positive or negative by entering movie reviews.  \
                You can choose between the Korean version and the English version.  \
                It also provides a version called ""Default"", which determines whether it is Korean or English and predicts it."


class LanguageIdentification:
    def __init__(self):
        pretrained_lang_model = "./lid.176.ftz"
        self.model = fasttext.load_model(pretrained_lang_model)

    def predict_lang(self, text):
        predictions = self.model.predict(text, k=200) # returns top 200 matching languages
        return predictions

LANGUAGE = LanguageIdentification()



def tokenized_data(tokenizer, inputs):
    return tokenizer.batch_encode_plus(
        [inputs],
        return_tensors="pt",
        padding="max_length",
        max_length=64,
        truncation=True)



examples = []
df = pd.read_csv('examples.csv', sep='\t', index_col='Unnamed: 0')
np.random.seed(100)

idx = np.random.choice(50, size=5, replace=False)
eng_examples = [ ['Eng', df.iloc[i, 0]] for i in idx ]
kor_examples = [ ['Kor', df.iloc[i, 1]] for i in idx ]
examples = eng_examples + kor_examples



eng_model_name = "roberta-base"
eng_step = 1900
eng_tokenizer = AutoTokenizer.from_pretrained(eng_model_name)
eng_file_name = "{}-{}.pt".format(eng_model_name, eng_step)
eng_state_dict = torch.load(eng_file_name)
eng_model = AutoModelForSequenceClassification.from_pretrained(
    eng_model_name, num_labels=2, id2label=id2label, label2id=label2id,
    state_dict=eng_state_dict
)


kor_model_name = "klue/roberta-small"
kor_step = 2400
kor_tokenizer = AutoTokenizer.from_pretrained(kor_model_name)
kor_file_name = "{}-{}.pt".format(kor_model_name.replace('/', '_'), kor_step)
kor_state_dict = torch.load(kor_file_name)
kor_model = AutoModelForSequenceClassification.from_pretrained(
    kor_model_name, num_labels=2, id2label=id2label, label2id=label2id,
    state_dict=kor_state_dict
)


def builder(Lang, Text):
    percent_kor, percent_eng = 0, 0
    text_list = Text.split(' ')


    # [ output_1 ]
    if Lang == 'Default':
        pred = LANGUAGE.predict_lang(Text)
        if '__label__en' in pred[0]:
            Lang = 'Eng'
            idx = pred[0].index('__label__en')
            p_eng = pred[1][idx]
        if '__label__ko' in pred[0]:
            Lang = 'Kor'
            idx = pred[0].index('__label__ko')
            p_kor = pred[1][idx]
        # Normalize Percentage
        percent_kor = p_kor / (p_kor+p_eng)
        percent_eng = p_eng / (p_kor+p_eng)

    if Lang == 'Eng':
        model = eng_model
        tokenizer = eng_tokenizer
        if percent_eng==0: percent_eng=1

    if Lang == 'Kor':
        model = kor_model
        tokenizer = kor_tokenizer
        if percent_kor==0: percent_kor=1
        

    # [ output_2 ]
    inputs = tokenized_data(tokenizer, Text)
    model.eval()
    with torch.no_grad():
        logits = model(input_ids=inputs['input_ids'], 
            attention_mask=inputs['attention_mask']).logits
    
    m = torch.nn.Softmax(dim=1)
    output = m(logits)
    # print(logits, output)


    # [ output_3 ]
    output_analysis = []
    for word in text_list:
        tokenized_word = tokenized_data(tokenizer, word)
        with torch.no_grad():
            logit = model(input_ids=tokenized_word['input_ids'], 
                attention_mask=tokenized_word['attention_mask']).logits
        word_output = m(logit)
        if word_output[0][1] > 0.99:
            output_analysis.append( (word, '+++') )
        elif word_output[0][1] > 0.9:
            output_analysis.append( (word, '++') )
        elif word_output[0][1] > 0.8:
            output_analysis.append( (word, '+') )
        elif word_output[0][1] < 0.01:
            output_analysis.append( (word, '---') )
        elif word_output[0][1] < 0.1:
            output_analysis.append( (word, '--') )
        elif word_output[0][1] < 0.2:
            output_analysis.append( (word, '-') )
        else:
            output_analysis.append( (word, None) )
    

    return [ {'Kor': percent_kor, 'Eng': percent_eng}, 
            {id2label[1]: output[0][1].item(), id2label[0]: output[0][0].item()}, 
            output_analysis ]
            
    # prediction = torch.argmax(logits, axis=1)
    return id2label[prediction.item()]


# demo3 = gr.Interface.load("models/mdj1412/movie_review_score_discriminator_eng", inputs="text", outputs="text", 
#                          title=title, theme="peach",
#                          allow_flagging="auto",
#                          description=description, examples=examples)



demo = gr.Interface(builder, inputs=[gr.inputs.Dropdown(['Default', 'Eng', 'Kor']), gr.Textbox(placeholder="๋ฆฌ๋ทฐ๋ฅผ ์ž…๋ ฅํ•˜์‹œ์˜ค.")], 
                    outputs=[ gr.Label(num_top_classes=3, label='Lang'), 
                            gr.Label(num_top_classes=2, label='Result'),
                            gr.HighlightedText(label="Analysis", combine_adjacent=False)
                            .style(color_map={"+++": "#CF0000", "++": "#FF3232", "+": "#FFD4D4", "---": "#0004FE", "--": "#4C47FF", "-": "#BEBDFF"}) ],
                    # outputs='label',
                    title=title, description=description, examples=examples)

with gr.Blocks() as demo1:
    gr.Markdown(
    """
    <h1 align="center">
    Movie Review Score Discriminator
    </h1>
    """)

    with gr.Accordion("Open for More!"):
        gr.Markdown(
        """
        ๋‚ด์šฉ์€ ์•„์ง ๋ฐ”๊พธ์ง€ ์•Š์•˜์Œ (ํ˜•์‹๋งŒ ์ฐธ๊ณ )  
        ๋ฌธ์ œ์  : ํด๋ฆฌ์–ด ํด๋ฆญ์ด ์›ํ•˜๋Š”๋Œ€๋กœ ์•ˆ๋จ
        It is a program that classifies whether it is positive or negative by entering movie reviews.  \
        You can choose between the Korean version and the English version.  \
        It also provides a version called ""Default"", which determines whether it is Korean or English and predicts it.
        """)


    with gr.Row():
        with gr.Column():
            inputs_1 = gr.inputs.Dropdown(['Default', 'Eng', 'Kor'])
            inputs_2 = gr.Textbox(placeholder="๋ฆฌ๋ทฐ๋ฅผ ์ž…๋ ฅํ•˜์‹œ์˜ค.")
            with gr.Row():
                btn2 = gr.Button("ํด๋ฆฌ์–ด")
                btn = gr.Button("์ œ์ถœํ•˜๊ธฐ")
        with gr.Column():
            output_1 = gr.Label(num_top_classes=3, label='Lang')
            output_2 = gr.Label(num_top_classes=2, label='Result')
            output_3 = gr.HighlightedText(label="Analysis", combine_adjacent=False) \
                .style(color_map={"+++": "#CF0000", "++": "#FF3232", "+": "#FFD4D4", "---": "#0004FE", "--": "#4C47FF", "-": "#BEBDFF"})
    
    btn.click(fn=builder, inputs=[inputs_1, inputs_2], outputs=[output_1, output_2, output_3])
    gr.Examples(examples, inputs=[inputs_1, inputs_2])
    


if __name__ == "__main__":
    # print(examples)
    # demo.launch()
    demo1.launch()