Upload 5 files
Browse files- app.py +38 -30
- klue_roberta-small-2400.pt +3 -0
app.py
CHANGED
@@ -28,7 +28,7 @@ description = "It is a program that classifies whether it is positive or negativ
|
|
28 |
|
29 |
def tokenized_data(tokenizer, inputs):
|
30 |
return tokenizer.batch_encode_plus(
|
31 |
-
inputs,
|
32 |
return_tensors="pt",
|
33 |
padding="max_length",
|
34 |
max_length=64,
|
@@ -44,35 +44,42 @@ examples = []
|
|
44 |
df = pd.read_csv('examples.csv', sep='\t', index_col='Unnamed: 0')
|
45 |
for i in range(2):
|
46 |
idx = random.randint(0, 50)
|
47 |
-
examples.append(df.iloc[idx, 0])
|
48 |
-
examples.append(df.iloc[idx, 1])
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
else:
|
64 |
-
|
65 |
-
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
file_name = "{}-{}.pt".format(model_name, step)
|
70 |
-
state_dict = torch.load(file_name)
|
71 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
72 |
-
model_name, num_labels=2, id2label=id2label, label2id=label2id,
|
73 |
-
state_dict=state_dict
|
74 |
-
)
|
75 |
-
|
76 |
model.eval()
|
77 |
with torch.no_grad():
|
78 |
logits = model(input_ids=inputs['input_ids'],
|
@@ -84,11 +91,11 @@ def builder(version, inputs):
|
|
84 |
|
85 |
|
86 |
def builder2(inputs):
|
87 |
-
return
|
88 |
|
89 |
|
90 |
demo = gr.Interface(builder, inputs=[gr.inputs.Dropdown(['Eng', 'Kor']), "text"], outputs="text",
|
91 |
-
title=title, description=description, examples=
|
92 |
|
93 |
# demo2 = gr.Interface(builder2, inputs="text", outputs="text",
|
94 |
# title=title, theme="peach",
|
@@ -101,5 +108,6 @@ demo = gr.Interface(builder, inputs=[gr.inputs.Dropdown(['Eng', 'Kor']), "text"]
|
|
101 |
# description=description, examples=examples)
|
102 |
|
103 |
if __name__ == "__main__":
|
|
|
104 |
demo.launch()
|
105 |
# demo3.launch()
|
|
|
28 |
|
29 |
def tokenized_data(tokenizer, inputs):
|
30 |
return tokenizer.batch_encode_plus(
|
31 |
+
[inputs],
|
32 |
return_tensors="pt",
|
33 |
padding="max_length",
|
34 |
max_length=64,
|
|
|
44 |
df = pd.read_csv('examples.csv', sep='\t', index_col='Unnamed: 0')
|
45 |
for i in range(2):
|
46 |
idx = random.randint(0, 50)
|
47 |
+
examples.append(['Eng', df.iloc[idx, 0]])
|
48 |
+
examples.append(['Kor', df.iloc[idx, 1]])
|
49 |
+
|
50 |
+
|
51 |
+
eng_model_name = "roberta-base"
|
52 |
+
eng_step = 1900
|
53 |
+
eng_tokenizer = AutoTokenizer.from_pretrained(eng_model_name)
|
54 |
+
eng_file_name = "{}-{}.pt".format(eng_model_name, eng_step)
|
55 |
+
eng_state_dict = torch.load(eng_file_name)
|
56 |
+
eng_model = AutoModelForSequenceClassification.from_pretrained(
|
57 |
+
eng_model_name, num_labels=2, id2label=id2label, label2id=label2id,
|
58 |
+
state_dict=eng_state_dict
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
kor_model_name = "klue_roberta-small"
|
63 |
+
kor_step = 2400
|
64 |
+
kor_tokenizer = AutoTokenizer.from_pretrained(kor_model_name.replace('_', '/'))
|
65 |
+
kor_file_name = "{}-{}.pt".format(kor_model_name, kor_step)
|
66 |
+
kor_state_dict = torch.load(kor_file_name)
|
67 |
+
kor_model = AutoModelForSequenceClassification.from_pretrained(
|
68 |
+
kor_model_name.replace('_', '/'), num_labels=2, id2label=id2label, label2id=label2id,
|
69 |
+
state_dict=kor_state_dict
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
def builder(lang, text):
|
74 |
+
if lang == 'Eng':
|
75 |
+
model = eng_model
|
76 |
+
tokenizer = eng_tokenizer
|
77 |
else:
|
78 |
+
model = kor_model
|
79 |
+
tokenizer = kor_tokenizer
|
80 |
|
81 |
+
inputs = tokenized_data(tokenizer, text)
|
82 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
model.eval()
|
84 |
with torch.no_grad():
|
85 |
logits = model(input_ids=inputs['input_ids'],
|
|
|
91 |
|
92 |
|
93 |
def builder2(inputs):
|
94 |
+
return eng_model(inputs)
|
95 |
|
96 |
|
97 |
demo = gr.Interface(builder, inputs=[gr.inputs.Dropdown(['Eng', 'Kor']), "text"], outputs="text",
|
98 |
+
title=title, description=description, examples=examples)
|
99 |
|
100 |
# demo2 = gr.Interface(builder2, inputs="text", outputs="text",
|
101 |
# title=title, theme="peach",
|
|
|
108 |
# description=description, examples=examples)
|
109 |
|
110 |
if __name__ == "__main__":
|
111 |
+
# print(examples)
|
112 |
demo.launch()
|
113 |
# demo3.launch()
|
klue_roberta-small-2400.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b572a576888999c3696750507168b1ec8c194b93e3b0a5fb69d5932cb61a410
|
3 |
+
size 272408049
|