Upload app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,13 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from transformers import AutoModelForSequenceClassification
|
3 |
from transformers import AutoTokenizer
|
|
|
4 |
import random
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
7 |
import torch
|
8 |
-
import fasttext
|
9 |
|
10 |
|
11 |
|
@@ -14,8 +16,8 @@ label2id = {"NEGATIVE": 0, "POSITIVE": 1}
|
|
14 |
|
15 |
|
16 |
title = "Movie Review Score Discriminator"
|
17 |
-
description = "It is a program that classifies whether it is positive or negative by entering movie reviews.
|
18 |
-
You can choose between the Korean version and the English version.
|
19 |
It also provides a version called Any, which determines whether it is Korean or English and predicts it."
|
20 |
|
21 |
|
@@ -94,8 +96,6 @@ def builder(lang, text):
|
|
94 |
with torch.no_grad():
|
95 |
logits = model(input_ids=inputs['input_ids'],
|
96 |
attention_mask=inputs['attention_mask']).logits
|
97 |
-
|
98 |
-
|
99 |
|
100 |
m = torch.nn.Softmax(dim=1)
|
101 |
output = m(logits)
|
@@ -109,7 +109,7 @@ def builder(lang, text):
|
|
109 |
|
110 |
|
111 |
demo = gr.Interface(builder, inputs=[gr.inputs.Dropdown(['Any', 'Eng', 'Kor']), "text"],
|
112 |
-
outputs=gr.Label(num_top_classes=2, label='
|
113 |
# outputs='label',
|
114 |
title=title, description=description, examples=examples)
|
115 |
|
@@ -118,7 +118,6 @@ demo = gr.Interface(builder, inputs=[gr.inputs.Dropdown(['Any', 'Eng', 'Kor']),
|
|
118 |
# title=title, theme="peach",
|
119 |
# allow_flagging="auto",
|
120 |
# description=description, examples=examples)
|
121 |
-
output = []
|
122 |
|
123 |
if __name__ == "__main__":
|
124 |
# print(examples)
|
|
|
1 |
import gradio as gr
|
2 |
+
import fasttext
|
3 |
+
|
4 |
from transformers import AutoModelForSequenceClassification
|
5 |
from transformers import AutoTokenizer
|
6 |
+
|
7 |
import random
|
8 |
import numpy as np
|
9 |
import pandas as pd
|
10 |
import torch
|
|
|
11 |
|
12 |
|
13 |
|
|
|
16 |
|
17 |
|
18 |
title = "Movie Review Score Discriminator"
|
19 |
+
description = "It is a program that classifies whether it is positive or negative by entering movie reviews. \
|
20 |
+
You can choose between the Korean version and the English version. \
|
21 |
It also provides a version called Any, which determines whether it is Korean or English and predicts it."
|
22 |
|
23 |
|
|
|
96 |
with torch.no_grad():
|
97 |
logits = model(input_ids=inputs['input_ids'],
|
98 |
attention_mask=inputs['attention_mask']).logits
|
|
|
|
|
99 |
|
100 |
m = torch.nn.Softmax(dim=1)
|
101 |
output = m(logits)
|
|
|
109 |
|
110 |
|
111 |
demo = gr.Interface(builder, inputs=[gr.inputs.Dropdown(['Any', 'Eng', 'Kor']), "text"],
|
112 |
+
outputs=gr.Label(num_top_classes=2, label='Result', color='CadetBlue'),
|
113 |
# outputs='label',
|
114 |
title=title, description=description, examples=examples)
|
115 |
|
|
|
118 |
# title=title, theme="peach",
|
119 |
# allow_flagging="auto",
|
120 |
# description=description, examples=examples)
|
|
|
121 |
|
122 |
if __name__ == "__main__":
|
123 |
# print(examples)
|