File size: 18,670 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f 08ae48a acfd37c 10e9b7d d59f015 e80aab9 3db6293 e80aab9 acfd37c 31243f4 d59f015 31243f4 4021bf3 acfd37c b90251f 31243f4 acfd37c 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 acfd37c 0ae98eb acfd37c b175db9 acfd37c b175db9 acfd37c e80aab9 31243f4 acfd37c 0ee0419 e514fd7 acfd37c e514fd7 e80aab9 acfd37c b175db9 e80aab9 31243f4 e80aab9 acfd37c 9088b99 7d65c66 e80aab9 acfd37c 31243f4 e80aab9 acfd37c e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import agents
from PIL import Image
from io import BytesIO
import whisper
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Load Agent ---
# 1. Instantiate Agent ( modify this part to create your agent)
agent = None
def select_agent(provider_name:str, model_name: str):
"""
Selects the agent based on the provided name.
:param agent_name: Name of the agent to select.
:return: The selected agent instance.
"""
global agent
try:
agent = agents.get_agent(model_name=model_name, model_type=provider_name)
if agent is None:
print(f"Agent not found for provider: {provider_name} and model: {model_name}")
agent = BasicAgent()
except Exception as e:
print(f"Error selecting agent: {e}")
agent = BasicAgent()
# Update ui to indicate the selected agent
print(f"Agent selected: {agent.model}")
agent_info_text.value = get_agent_info()
return agent
def get_agent_info() -> str:
global agent
if (agent is None):
return "No agent selected."
try:
# Get the agent's class name
agent_class_name = agent.__class__.__name__
# Get the agent's model name
model_name = agent.model
# Get the agent's docstring
docstring = inspect.getdoc(agent)
# Format the information
info = f"Agent Class: {agent_class_name}\nModel Name: {model_name}\nDocstring: {docstring}"
return info
except Exception as e:
print(f"Error getting agent info: {e}")
return "Error getting agent info."
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
fixed_answer = "This is a default answer."
print(f"Agent returning fixed answer: {fixed_answer}")
return fixed_answer
def get_all_questions():
"""
Fetches all available questions from the API.
"""
yield from run_test_on_questions(False, False)
def run_test_on_all_questions():
"""
Runs tests on all available questions by forwarding yields from run_test_on_questions.
"""
yield from run_test_on_questions(False, True)
def run_test_on_random_question():
"""
Runs a single test on a random available question by forwarding yields from run_test_on_questions.
"""
yield from run_test_on_questions(True, True)
def run_test_on_questions(use_random_question: bool, run_agent:bool):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
global agent
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/random-question" if use_random_question else f"{api_url}/questions"
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
info = "# started request"
yield info, None
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_dataset_raw = response.json()
questions_dataset = [questions_dataset_raw] if use_random_question else questions_dataset_raw
yield info, None
if not questions_dataset:
print("Fetched questions list is empty.")
yield info +"\n\nFetched questions list is empty or invalid format.", None
return
print(f"Fetched {len(questions_dataset)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
yield f"Error fetching questions: {e}", None
return
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
yield f"Error decoding server response for questions: {e}", None
return
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
yield f"An unexpected error occurred fetching questions: {e}", None
return
# 3. Run your Agent
results_log = []
answers_payload = []
# loop over all questions
for i, questions_data in enumerate(questions_dataset):
agent.memory.reset()
images = []
task_id = questions_data.get("task_id")
question_text = questions_data.get("question")
file_name = questions_data.get("file_name")
if (file_name != "" and file_name is not None):
question_text = question_text + f"\n\nYou can download the correspondig file using the download tool with the task id: {task_id}."
fileData = requests.get(f"{DEFAULT_API_URL}/files/{task_id}")
# check if file is an image
if fileData.headers['Content-Type'] in ['image/png', 'image/jpeg']:
image = Image.open(BytesIO(fileData.content)).convert("RGB")
images = [image]
if fileData.headers['Content-Type'] in ['audio/mpeg', 'audio/wav']:
# Load the audio file using Whisper
model = whisper.load_model("base")
# MP3-Datei von der API abrufen
with open("temp_audio.mp3", "wb") as f:
f.write(fileData.content)
# Transkription durchführen
audioContent = model.transcribe("temp_audio.mp3")
question_text = question_text + f"\n\nTranscription: {audioContent['text']}"
info += f"\n\nRunning agent on question {i+1}/{len(questions_dataset)}:\n - task_id: {task_id}\n - question: {question_text}"
yield info, None
if not task_id or question_text is None:
yield info+ f"\nError in question data: {questions_data}", None
return
try:
submitted_answer = agent.run(question_text, images=images) if run_agent else "-- no agent interaction --"
info += f"\n - got answer {submitted_answer}"
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer, "FileInfo": file_name})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}", "FileInfo": file_name})
if not answers_payload:
print("Agent did not produce any answers.")
yield info + "\nAgent did not produce any answers.", pd.DataFrame(results_log)
return
# 5. Submit
try:
results_df = pd.DataFrame(results_log)
yield info + "\nGot an answer from agent", results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
yield status_message, results_df
return
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
return "We are not there yet", None
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
def fetch_ollama_models() -> list:
"""
Fetches available models from the Ollama server.
:return: List of available models.
"""
try:
response = requests.get("http://localhost:11434/api/tags")
response.raise_for_status()
data = response.json()
return [model["name"] for model in data["models"]]
except requests.exceptions.RequestException as e:
print(f"Error fetching Ollama models: {e}")
return ["None"]
def fetch_lmstudio_models() -> list:
"""
Fetches available models from the LM Studio server.
:return: List of available models.
"""
try:
response = requests.get("http://localhost:1234/v1/models")
response.raise_for_status()
data = response.json()
return [model["id"] for model in data["data"]]
except requests.exceptions.RequestException as e:
print(f"Error fetching LM Studio models: {e}")
return ["None"]
available_models = ["None"]
def update_available_models(provider:str):
"""
Fetches available models based on the selected provider.
:param provider: The selected provider name.
:return: Update object for the model dropdown.
"""
global available_models
print(f"Selected provider: {provider}")
match provider:
case "hugging face":
available_models = ["None", "Qwen/Qwen2.5-Coder-32B-Instruct", "Qwen/Qwen2.5-Omni-7B"]
case "Ollama":
available_models = fetch_ollama_models()
case "LMStudio":
available_models = fetch_lmstudio_models()
case "Gemini":
available_models = ["None", "Gemini-2.0-flash-exp", "Gemini-2.0-flash-lite"]
case "Anthropic":
available_models = ["None", "claude-3"] # just for later options, model name possibly wrong
case "OpenAI":
available_models = ["None", "gpt-4o", "gpt-3.5-turbo"] # just for later options, model name possibly wrong
case "Basic Agent":
available_models = ["None"]
case _:
available_models = ["None"]
print(f"Available models for {provider}: {available_models}")
return gr.Dropdown(choices=available_models)
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
agent_info_text = gr.Text(label="Agent Name", value=get_agent_info(), interactive=False, visible=True)
gr.Markdown(
"""
**Instructions:**
Select a provider and then model to generate the agent.
"""
)
provider_select = gr.Dropdown(
label="Select Provider",
choices=["Basic Agent", "LMStudio", "Ollama", "hugging face", "Gemini", "Anthropic", "OpenAI"],
interactive=True,
visible=True,
multiselect=False)
model_select = gr.Dropdown(
label="Select Model",
choices=available_models,
interactive=True,
visible=True,
multiselect=False)
# changing the provider will change the available models
provider_select.input(fn=update_available_models, inputs=provider_select, outputs=[model_select])
# changing a model will update the agent (see select_agent)
model_select.change(fn=select_agent, inputs=[provider_select, model_select])
# in case of running on HF space, we support the login button
# we somehow need to find out, if this is running on HF space or not
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
run_test_button = gr.Button("Run Test on Random Question")
run_multiple_tests_button = gr.Button("Run tests on all questions")
run_get_questions_button = gr.Button("Get Questions")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_test_button.click(
fn=run_test_on_random_question,
outputs=[status_output, results_table]
)
run_multiple_tests_button.click(
fn=run_test_on_all_questions,
outputs=[status_output, results_table]
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
run_get_questions_button.click(
fn=get_all_questions,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |