Upload 2 files
Browse files
agents.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from smolagents import CodeAgent, LiteLLMModel, load_tool, ToolCollection, HfApiModel, InferenceClientModel, TransformersModel, OpenAIServerModel
|
3 |
+
from smolagents import ToolCallingAgent, PythonInterpreterTool, tool, WikipediaSearchTool
|
4 |
+
from smolagents import DuckDuckGoSearchTool, FinalAnswerTool, VisitWebpageTool, SpeechToTextTool
|
5 |
+
from mcp import StdioServerParameters
|
6 |
+
from huggingface_hub import HfApi, login
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
from typing import Optional
|
9 |
+
from models.gemini_model import GeminiModel
|
10 |
+
import requests
|
11 |
+
import re
|
12 |
+
import string
|
13 |
+
import random
|
14 |
+
import textwrap
|
15 |
+
import nltk
|
16 |
+
import spacy
|
17 |
+
|
18 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
19 |
+
|
20 |
+
|
21 |
+
@tool
|
22 |
+
def download_file(task_id: str) -> str:
|
23 |
+
"""
|
24 |
+
Returns the file path of the downloaded file.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
task_id: the ID of the task to download the file for.
|
28 |
+
"""
|
29 |
+
# Implement your file download logic here
|
30 |
+
data = requests.get(f"{DEFAULT_API_URL}/files/{task_id}")
|
31 |
+
if data.status_code == 200:
|
32 |
+
file_path = f"/tmp/{task_id}"
|
33 |
+
with open(file_path, "wb") as file:
|
34 |
+
file.write(data.content)
|
35 |
+
return file_path
|
36 |
+
else:
|
37 |
+
raise Exception(f"Failed to download file: {data.status_code}")
|
38 |
+
|
39 |
+
@tool
|
40 |
+
def get_file_content_as_text(task_id: str) -> str:
|
41 |
+
"""
|
42 |
+
Returns the content of the file as text.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
task_id: the ID of the task to get the file content for.
|
46 |
+
"""
|
47 |
+
# Implement your file content retrieval logic here
|
48 |
+
data = requests.get(f"{DEFAULT_API_URL}/files/{task_id}")
|
49 |
+
if data.status_code == 200:
|
50 |
+
return data.text
|
51 |
+
else:
|
52 |
+
raise Exception(f"Failed to get file content: {data.status_code}")
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
def load_hf_model(modelName: str):
|
57 |
+
"""
|
58 |
+
Lädt ein Hugging Face Modell und gibt den Agenten zurück.
|
59 |
+
:param modelName: Name des Modells
|
60 |
+
:return: model
|
61 |
+
"""
|
62 |
+
load_dotenv() # Lädt automatisch .env im Projektordner
|
63 |
+
|
64 |
+
hf_token = os.getenv("hugging_face")
|
65 |
+
login(token=hf_token) # Authentifizierung bei Hugging Face
|
66 |
+
# Modell initialisieren
|
67 |
+
model = HfApiModel(model_id=modelName)
|
68 |
+
return model
|
69 |
+
|
70 |
+
|
71 |
+
def load_ollama_model(modelName: str):
|
72 |
+
"""
|
73 |
+
Lädt ein Ollama Modell und gibt den Agenten zurück.
|
74 |
+
:param modelName: Name des Modells
|
75 |
+
:return: model
|
76 |
+
"""
|
77 |
+
# Modell initialisieren
|
78 |
+
model = OpenAIServerModel(model_id=modelName, api_base="http://localhost:11434/v1")
|
79 |
+
return model
|
80 |
+
|
81 |
+
def load_lmStudio_model(modelName: str):
|
82 |
+
"""
|
83 |
+
Lädt ein LM Studio Modell und gibt den Agenten zurück.
|
84 |
+
:param modelName: Name des Modells
|
85 |
+
:return: model
|
86 |
+
"""
|
87 |
+
# Modell initialisieren
|
88 |
+
#model = LiteLLMModel(model_id=modelName, api_base="http://localhost:1234")
|
89 |
+
model = OpenAIServerModel(model_id=modelName, api_base="http://localhost:1234/v1")
|
90 |
+
return model
|
91 |
+
|
92 |
+
def load_gemini_model():
|
93 |
+
"""
|
94 |
+
Lädt ein Gemini Modell und gibt den Agenten zurück.
|
95 |
+
:return: model
|
96 |
+
"""
|
97 |
+
try:
|
98 |
+
print(f"Gemini API Key: {os.getenv('GEMINI_API_KEY')}")
|
99 |
+
model = LiteLLMModel(model_id="gemini/gemini-2.0-flash-exp",
|
100 |
+
api_key=os.getenv("GEMINI_API_KEY"))
|
101 |
+
#model = GeminiModel(api_key=os.getenv("GEMINI_API_KEY"))
|
102 |
+
return model
|
103 |
+
except Exception as e:
|
104 |
+
print("Error loading Gemini model:", e)
|
105 |
+
return None
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
def get_agent(model_name:str, model_type:str) -> Optional[CodeAgent]:
|
110 |
+
# Modell initialisieren
|
111 |
+
|
112 |
+
match model_type:
|
113 |
+
case "hugging face":
|
114 |
+
model = load_hf_model(model_name)
|
115 |
+
case "Ollama":
|
116 |
+
model = load_ollama_model(model_name)
|
117 |
+
case "Gemini":
|
118 |
+
model = load_gemini_model()
|
119 |
+
case "LMStudio":
|
120 |
+
model = load_lmStudio_model(model_name)
|
121 |
+
case _:
|
122 |
+
print("Model type not supported.")
|
123 |
+
return None
|
124 |
+
|
125 |
+
#model = load_lmStudio_model("gemma-3-4b-it")
|
126 |
+
#model = load_gemini_model()
|
127 |
+
#mopip del = HfApiModel()
|
128 |
+
#model=InferenceClientModel(model_id="meta-llama/Meta-Llama-3.1-8B-Instruct")
|
129 |
+
#model = TransformersModel(model_id="HuggingFaceTB/SmolLM-135M-Instruct")
|
130 |
+
# Tools laden
|
131 |
+
web_search_tool = DuckDuckGoSearchTool()
|
132 |
+
final_answer_tool = FinalAnswerTool()
|
133 |
+
visit_webpage_tool = VisitWebpageTool()
|
134 |
+
|
135 |
+
#speech_to_text_tool = SpeechToTextTool()
|
136 |
+
#transcript_tool = load_tool("maguid28/TranscriptTool", trust_remote_code=True)
|
137 |
+
|
138 |
+
#mcp_tool_collection = ToolCollection.from_mcp(server_parameters, trust_remote_code=True)
|
139 |
+
#with ToolCollection.from_mcp(server_parameters, trust_remote_code=True) as tool_collection:
|
140 |
+
# mcp_tool_agent = CodeAgent(tools=[*tool_collection.tools], add_base_tools=True)
|
141 |
+
|
142 |
+
#server_parameters = StdioServerParameters(
|
143 |
+
# command="uv",
|
144 |
+
# args=["--quiet", "pubmedmcp@0.1.3"],
|
145 |
+
# env={"UV_PYTHON": "3.12", **os.environ},
|
146 |
+
#)
|
147 |
+
#
|
148 |
+
#with ToolCollection.from_mcp(server_parameters, trust_remote_code=True) as tool_collection:
|
149 |
+
# mcp_agent = CodeAgent(tools=[*tool_collection.tools], model=model, add_base_tools=True)
|
150 |
+
|
151 |
+
variation_agent = CodeAgent(
|
152 |
+
model=model,
|
153 |
+
tools=[PythonInterpreterTool()],
|
154 |
+
name="variation_agent",
|
155 |
+
description="Get the user question and checks if the given question makes sense at all, if not, we try to modify the text like reverse. Provide the content / the questin as the 'task' argument." \
|
156 |
+
"The agent can write professional python code, focused on modifiying texts." \
|
157 |
+
"It has access to the following libraries: re, string, random, textwrap, nltk and spacy." \
|
158 |
+
"The goal is to find out, if a user question is a trick, and we might modify the content.",
|
159 |
+
additional_authorized_imports=[
|
160 |
+
"re",
|
161 |
+
"string",
|
162 |
+
"random",
|
163 |
+
"textwrap",
|
164 |
+
"nltk",
|
165 |
+
"spacy"
|
166 |
+
]
|
167 |
+
)
|
168 |
+
variation_agent.system_prompt = "You are a text variation agent. You can write professional python code, focused on modifiying texts." \
|
169 |
+
"You can use the following libraries: re, string, random, textwrap, nltk and spacy." \
|
170 |
+
"Your goal is to find out, if a user question is a trick, and we might modify the content."
|
171 |
+
|
172 |
+
code_agent = CodeAgent(
|
173 |
+
name="code_agent",
|
174 |
+
description="Can generate code an run it. It provides the possibility to download additional files if needed.",
|
175 |
+
model=model,
|
176 |
+
tools=[download_file, PythonInterpreterTool(), get_file_content_as_text],
|
177 |
+
additional_authorized_imports=[
|
178 |
+
"geopandas",
|
179 |
+
"plotly",
|
180 |
+
"shapely",
|
181 |
+
"json",
|
182 |
+
"pandas",
|
183 |
+
"numpy",
|
184 |
+
],
|
185 |
+
verbosity_level=2,
|
186 |
+
#final_answer_checks=[FinalAnswerTool()],
|
187 |
+
max_steps=5,
|
188 |
+
)
|
189 |
+
|
190 |
+
final_answer_tool = FinalAnswerTool()
|
191 |
+
final_answer_tool.description = "You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."
|
192 |
+
|
193 |
+
tool_agent = CodeAgent(
|
194 |
+
model=model,
|
195 |
+
tools=[web_search_tool, visit_webpage_tool, WikipediaSearchTool(), final_answer_tool],
|
196 |
+
verbosity_level=2,
|
197 |
+
max_steps=15,
|
198 |
+
managed_agents=[code_agent, variation_agent],
|
199 |
+
planning_interval=5,
|
200 |
+
)
|
201 |
+
|
202 |
+
return tool_agent
|
203 |
+
# return tool_agent
|
204 |
+
|
205 |
+
manager_agent = CodeAgent(
|
206 |
+
#model=HfApiModel("deepseek-ai/DeepSeek-R1", provider="together", max_tokens=8096),
|
207 |
+
model=model,
|
208 |
+
tools=[web_search_tool, visit_webpage_tool],
|
209 |
+
# managed_agents=[mcp_tool_agent],
|
210 |
+
additional_authorized_imports=[
|
211 |
+
"geopandas",
|
212 |
+
"plotly",
|
213 |
+
"shapely",
|
214 |
+
"json",
|
215 |
+
"pandas",
|
216 |
+
"numpy",
|
217 |
+
],
|
218 |
+
planning_interval=5,
|
219 |
+
verbosity_level=2,
|
220 |
+
#final_answer_checks=[FinalAnswerTool()],
|
221 |
+
max_steps=15
|
222 |
+
)
|
223 |
+
|
224 |
+
return manager_agent
|
app.py
CHANGED
@@ -3,11 +3,60 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# --- Basic Agent Definition ---
|
12 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
class BasicAgent:
|
@@ -19,11 +68,135 @@ class BasicAgent:
|
|
19 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
20 |
return fixed_answer
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
"""
|
24 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
25 |
and displays the results.
|
26 |
"""
|
|
|
|
|
27 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
28 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
29 |
|
@@ -140,37 +313,140 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
140 |
return status_message, results_df
|
141 |
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
# --- Build Gradio Interface using Blocks ---
|
144 |
with gr.Blocks() as demo:
|
145 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
|
|
|
|
|
|
146 |
gr.Markdown(
|
147 |
"""
|
148 |
**Instructions:**
|
149 |
|
150 |
-
|
151 |
-
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
152 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
153 |
-
|
154 |
-
---
|
155 |
-
**Disclaimers:**
|
156 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
158 |
"""
|
159 |
)
|
160 |
|
161 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
# Removed max_rows=10 from DataFrame constructor
|
167 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
run_button.click(
|
170 |
fn=run_and_submit_all,
|
171 |
outputs=[status_output, results_table]
|
172 |
)
|
173 |
|
|
|
|
|
|
|
|
|
|
|
174 |
if __name__ == "__main__":
|
175 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
+
from agents import agents
|
7 |
+
from PIL import Image
|
8 |
+
from io import BytesIO
|
9 |
+
import whisper
|
10 |
|
11 |
# (Keep Constants as is)
|
12 |
# --- Constants ---
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
|
15 |
+
# --- Load Agent ---
|
16 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
17 |
+
|
18 |
+
agent = None
|
19 |
+
|
20 |
+
def select_agent(provider_name:str, model_name: str):
|
21 |
+
"""
|
22 |
+
Selects the agent based on the provided name.
|
23 |
+
:param agent_name: Name of the agent to select.
|
24 |
+
:return: The selected agent instance.
|
25 |
+
"""
|
26 |
+
global agent
|
27 |
+
try:
|
28 |
+
agent = agents.get_agent(model_name=model_name, model_type=provider_name)
|
29 |
+
if agent is None:
|
30 |
+
print(f"Agent not found for provider: {provider_name} and model: {model_name}")
|
31 |
+
agent = BasicAgent()
|
32 |
+
except Exception as e:
|
33 |
+
print(f"Error selecting agent: {e}")
|
34 |
+
agent = BasicAgent()
|
35 |
+
# Update ui to indicate the selected agent
|
36 |
+
print(f"Agent selected: {agent.model}")
|
37 |
+
agent_info_text.value = get_agent_info()
|
38 |
+
return agent
|
39 |
+
|
40 |
+
|
41 |
+
def get_agent_info() -> str:
|
42 |
+
global agent
|
43 |
+
if (agent is None):
|
44 |
+
return "No agent selected."
|
45 |
+
try:
|
46 |
+
# Get the agent's class name
|
47 |
+
agent_class_name = agent.__class__.__name__
|
48 |
+
# Get the agent's model name
|
49 |
+
model_name = agent.model
|
50 |
+
# Get the agent's docstring
|
51 |
+
docstring = inspect.getdoc(agent)
|
52 |
+
# Format the information
|
53 |
+
info = f"Agent Class: {agent_class_name}\nModel Name: {model_name}\nDocstring: {docstring}"
|
54 |
+
return info
|
55 |
+
except Exception as e:
|
56 |
+
print(f"Error getting agent info: {e}")
|
57 |
+
return "Error getting agent info."
|
58 |
+
|
59 |
+
|
60 |
# --- Basic Agent Definition ---
|
61 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
62 |
class BasicAgent:
|
|
|
68 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
69 |
return fixed_answer
|
70 |
|
71 |
+
|
72 |
+
def get_all_questions():
|
73 |
+
"""
|
74 |
+
Fetches all available questions from the API.
|
75 |
+
"""
|
76 |
+
yield from run_test_on_questions(False, False)
|
77 |
+
|
78 |
+
def run_test_on_all_questions():
|
79 |
+
"""
|
80 |
+
Runs tests on all available questions by forwarding yields from run_test_on_questions.
|
81 |
+
"""
|
82 |
+
yield from run_test_on_questions(False, True)
|
83 |
+
|
84 |
+
def run_test_on_random_question():
|
85 |
+
"""
|
86 |
+
Runs a single test on a random available question by forwarding yields from run_test_on_questions.
|
87 |
+
"""
|
88 |
+
yield from run_test_on_questions(True, True)
|
89 |
+
|
90 |
+
|
91 |
+
def run_test_on_questions(use_random_question: bool, run_agent:bool):
|
92 |
+
"""
|
93 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
94 |
+
and displays the results.
|
95 |
+
"""
|
96 |
+
|
97 |
+
global agent
|
98 |
+
api_url = DEFAULT_API_URL
|
99 |
+
questions_url = f"{api_url}/random-question" if use_random_question else f"{api_url}/questions"
|
100 |
+
|
101 |
+
|
102 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
103 |
+
info = "# started request"
|
104 |
+
yield info, None
|
105 |
+
# 2. Fetch Questions
|
106 |
+
print(f"Fetching questions from: {questions_url}")
|
107 |
+
try:
|
108 |
+
response = requests.get(questions_url, timeout=15)
|
109 |
+
response.raise_for_status()
|
110 |
+
questions_dataset_raw = response.json()
|
111 |
+
questions_dataset = [questions_dataset_raw] if use_random_question else questions_dataset_raw
|
112 |
+
yield info, None
|
113 |
+
if not questions_dataset:
|
114 |
+
print("Fetched questions list is empty.")
|
115 |
+
yield info +"\n\nFetched questions list is empty or invalid format.", None
|
116 |
+
return
|
117 |
+
print(f"Fetched {len(questions_dataset)} questions.")
|
118 |
+
except requests.exceptions.RequestException as e:
|
119 |
+
print(f"Error fetching questions: {e}")
|
120 |
+
yield f"Error fetching questions: {e}", None
|
121 |
+
return
|
122 |
+
except requests.exceptions.JSONDecodeError as e:
|
123 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
124 |
+
print(f"Response text: {response.text[:500]}")
|
125 |
+
yield f"Error decoding server response for questions: {e}", None
|
126 |
+
return
|
127 |
+
except Exception as e:
|
128 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
129 |
+
yield f"An unexpected error occurred fetching questions: {e}", None
|
130 |
+
return
|
131 |
+
|
132 |
+
# 3. Run your Agent
|
133 |
+
results_log = []
|
134 |
+
answers_payload = []
|
135 |
+
# loop over all questions
|
136 |
+
for i, questions_data in enumerate(questions_dataset):
|
137 |
+
|
138 |
+
agent.memory.reset()
|
139 |
+
images = []
|
140 |
+
task_id = questions_data.get("task_id")
|
141 |
+
question_text = questions_data.get("question")
|
142 |
+
file_name = questions_data.get("file_name")
|
143 |
+
if (file_name != "" and file_name is not None):
|
144 |
+
question_text = question_text + f"\n\nYou can download the correspondig file using the download tool with the task id: {task_id}."
|
145 |
+
fileData = requests.get(f"{DEFAULT_API_URL}/files/{task_id}")
|
146 |
+
# check if file is an image
|
147 |
+
if fileData.headers['Content-Type'] in ['image/png', 'image/jpeg']:
|
148 |
+
image = Image.open(BytesIO(fileData.content)).convert("RGB")
|
149 |
+
images = [image]
|
150 |
+
if fileData.headers['Content-Type'] in ['audio/mpeg', 'audio/wav']:
|
151 |
+
# Load the audio file using Whisper
|
152 |
+
model = whisper.load_model("base")
|
153 |
+
# MP3-Datei von der API abrufen
|
154 |
+
with open("temp_audio.mp3", "wb") as f:
|
155 |
+
f.write(fileData.content)
|
156 |
+
|
157 |
+
# Transkription durchführen
|
158 |
+
audioContent = model.transcribe("temp_audio.mp3")
|
159 |
+
question_text = question_text + f"\n\nTranscription: {audioContent['text']}"
|
160 |
+
info += f"\n\nRunning agent on question {i+1}/{len(questions_dataset)}:\n - task_id: {task_id}\n - question: {question_text}"
|
161 |
+
yield info, None
|
162 |
+
if not task_id or question_text is None:
|
163 |
+
yield info+ f"\nError in question data: {questions_data}", None
|
164 |
+
return
|
165 |
+
try:
|
166 |
+
submitted_answer = agent.run(question_text, images=images) if run_agent else "-- no agent interaction --"
|
167 |
+
info += f"\n - got answer {submitted_answer}"
|
168 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
169 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer, "FileInfo": file_name})
|
170 |
+
except Exception as e:
|
171 |
+
print(f"Error running agent on task {task_id}: {e}")
|
172 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}", "FileInfo": file_name})
|
173 |
+
|
174 |
+
if not answers_payload:
|
175 |
+
print("Agent did not produce any answers.")
|
176 |
+
yield info + "\nAgent did not produce any answers.", pd.DataFrame(results_log)
|
177 |
+
return
|
178 |
+
|
179 |
+
# 5. Submit
|
180 |
+
|
181 |
+
try:
|
182 |
+
results_df = pd.DataFrame(results_log)
|
183 |
+
yield info + "\nGot an answer from agent", results_df
|
184 |
+
except Exception as e:
|
185 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
186 |
+
print(status_message)
|
187 |
+
results_df = pd.DataFrame(results_log)
|
188 |
+
yield status_message, results_df
|
189 |
+
return
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
194 |
"""
|
195 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
196 |
and displays the results.
|
197 |
"""
|
198 |
+
|
199 |
+
return "We are not there yet", None
|
200 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
201 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
202 |
|
|
|
313 |
return status_message, results_df
|
314 |
|
315 |
|
316 |
+
def fetch_ollama_models() -> list:
|
317 |
+
"""
|
318 |
+
Fetches available models from the Ollama server.
|
319 |
+
:return: List of available models.
|
320 |
+
"""
|
321 |
+
try:
|
322 |
+
response = requests.get("http://localhost:11434/api/tags")
|
323 |
+
response.raise_for_status()
|
324 |
+
data = response.json()
|
325 |
+
return [model["name"] for model in data["models"]]
|
326 |
+
except requests.exceptions.RequestException as e:
|
327 |
+
print(f"Error fetching Ollama models: {e}")
|
328 |
+
return ["None"]
|
329 |
+
def fetch_lmstudio_models() -> list:
|
330 |
+
"""
|
331 |
+
Fetches available models from the LM Studio server.
|
332 |
+
:return: List of available models.
|
333 |
+
"""
|
334 |
+
try:
|
335 |
+
response = requests.get("http://localhost:1234/v1/models")
|
336 |
+
response.raise_for_status()
|
337 |
+
data = response.json()
|
338 |
+
return [model["id"] for model in data["data"]]
|
339 |
+
except requests.exceptions.RequestException as e:
|
340 |
+
print(f"Error fetching LM Studio models: {e}")
|
341 |
+
return ["None"]
|
342 |
+
|
343 |
+
|
344 |
+
available_models = ["None"]
|
345 |
+
|
346 |
+
def update_available_models(provider:str):
|
347 |
+
"""
|
348 |
+
Fetches available models based on the selected provider.
|
349 |
+
:param provider: The selected provider name.
|
350 |
+
:return: Update object for the model dropdown.
|
351 |
+
"""
|
352 |
+
global available_models
|
353 |
+
print(f"Selected provider: {provider}")
|
354 |
+
|
355 |
+
match provider:
|
356 |
+
case "hugging face":
|
357 |
+
available_models = ["None", "", "QWEN-2-instruct"]
|
358 |
+
case "Ollama":
|
359 |
+
available_models = fetch_ollama_models()
|
360 |
+
case "LMStudio":
|
361 |
+
available_models = fetch_lmstudio_models()
|
362 |
+
case "Gemini":
|
363 |
+
available_models = ["None", "Gemini-2.0-flash-exp", "Gemini-2.0-flash-lite"]
|
364 |
+
case "Anthropic":
|
365 |
+
available_models = ["None", "Claude-3"]
|
366 |
+
case "OpenAI":
|
367 |
+
available_models = ["None", "GPT-4", "GPT-3.5-turbo"]
|
368 |
+
case "Basic Agent":
|
369 |
+
available_models = ["None"]
|
370 |
+
case _:
|
371 |
+
available_models = ["None"]
|
372 |
+
|
373 |
+
print(f"Available models for {provider}: {available_models}")
|
374 |
+
|
375 |
+
|
376 |
+
return gr.Dropdown(choices=available_models)
|
377 |
+
|
378 |
+
|
379 |
+
|
380 |
# --- Build Gradio Interface using Blocks ---
|
381 |
with gr.Blocks() as demo:
|
382 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
383 |
+
|
384 |
+
agent_info_text = gr.Text(label="Agent Name", value=get_agent_info(), interactive=False, visible=True)
|
385 |
+
|
386 |
gr.Markdown(
|
387 |
"""
|
388 |
**Instructions:**
|
389 |
|
390 |
+
Select a provider and then model to generate the agent.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
"""
|
392 |
)
|
393 |
|
394 |
+
provider_select = gr.Dropdown(
|
395 |
+
label="Select Provider",
|
396 |
+
choices=["Basic Agent", "LMStudio", "Ollama", "hugging face", "Gemini", "Anthropic", "OpenAI"],
|
397 |
+
interactive=True,
|
398 |
+
visible=True,
|
399 |
+
multiselect=False)
|
400 |
+
|
401 |
+
model_select = gr.Dropdown(
|
402 |
+
label="Select Model",
|
403 |
+
choices=available_models,
|
404 |
+
interactive=True,
|
405 |
+
visible=True,
|
406 |
+
multiselect=False)
|
407 |
+
|
408 |
+
# changing the provider will change the available models
|
409 |
+
provider_select.input(fn=update_available_models, inputs=provider_select, outputs=[model_select])
|
410 |
+
|
411 |
+
# changing a model will update the agent (see select_agent)
|
412 |
+
model_select.change(fn=select_agent, inputs=[provider_select, model_select])
|
413 |
+
|
414 |
+
# in case of running on HF space, we support the login button
|
415 |
+
# we somehow need to find out, if this is running on HF space or not
|
416 |
+
#gr.LoginButton()
|
417 |
|
418 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
419 |
|
420 |
+
run_test_button = gr.Button("Run Test on Random Question")
|
421 |
+
|
422 |
+
run_multiple_tests_button = gr.Button("Run tests on all questions")
|
423 |
+
|
424 |
+
run_get_questions_button = gr.Button("Get Questions")
|
425 |
+
|
426 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
427 |
# Removed max_rows=10 from DataFrame constructor
|
428 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
429 |
|
430 |
+
run_test_button.click(
|
431 |
+
fn=run_test_on_random_question,
|
432 |
+
outputs=[status_output, results_table]
|
433 |
+
)
|
434 |
+
|
435 |
+
run_multiple_tests_button.click(
|
436 |
+
fn=run_test_on_all_questions,
|
437 |
+
outputs=[status_output, results_table]
|
438 |
+
)
|
439 |
+
|
440 |
run_button.click(
|
441 |
fn=run_and_submit_all,
|
442 |
outputs=[status_output, results_table]
|
443 |
)
|
444 |
|
445 |
+
run_get_questions_button.click(
|
446 |
+
fn=get_all_questions,
|
447 |
+
outputs=[status_output, results_table]
|
448 |
+
)
|
449 |
+
|
450 |
if __name__ == "__main__":
|
451 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
452 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|