Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 23,946 Bytes
f146d30 9346f1c 1d28680 4596a70 2a5f9fb 1ffc326 0f09631 8c49cb6 196151e 8c49cb6 196151e 8c49cb6 196151e 8c49cb6 196151e 8c49cb6 d1852d8 8c49cb6 df66f6e 0f09631 df66f6e 2135b2d df66f6e 9c999fc 0f09631 f4d3c9c 0f09631 df66f6e 99a4ea0 0d259e6 df66f6e 8c49cb6 57cc619 0c74571 50df158 d084b26 57cc619 5904ab6 d084b26 285f1d2 d084b26 2be444d 57cc619 25dd275 d79378a 25dd275 016c2e7 50419e9 28bab67 7fd8d10 28bab67 50419e9 e9ff778 50419e9 081a68a 57cc619 e9ff778 081a68a 4a39b37 e9ff778 fe7e796 5df655f e36d99d e9ff778 081a68a 96fd777 e9ff778 7fd8d10 50419e9 e9ff778 081a68a 0109b82 e9ff778 081a68a f4d3c9c 081a68a 016c2e7 7271587 047f6fc 285f1d2 3c021a4 016c2e7 da97add 285f1d2 016c2e7 57cc619 2bc7f4f 047f6fc dc8017a 57cc619 2bc7f4f da97add e647d43 2bc7f4f da97add 8604d8b 016c2e7 e647d43 50419e9 89d26b4 7fd8d10 89d26b4 50419e9 d1852d8 0c74571 d1852d8 f42c85a 0255312 50419e9 0109b82 f4d3c9c 50419e9 f42c85a 50419e9 1ea4467 3437d98 7ec9c70 676db2b 0556b59 c666df6 285f1d2 d79378a 7fd8d10 d79378a 676db2b 8f302de ba2c044 8c936c3 2bc7f4f 8c936c3 2bc7f4f 8c936c3 2bc7f4f 8c936c3 2bc7f4f 8c936c3 2bc7f4f 8c936c3 54d2632 16a1159 54d2632 0255312 e4bb553 54d2632 e4bb553 99a4ea0 54d2632 2e5629e 54d2632 3355ed8 c106bef e4bb553 c106bef 54d2632 c106bef 2e5629e c106bef 54d2632 c106bef 39a5dc9 c106bef 54d2632 3355ed8 2a4320e 39a5dc9 2a4320e 1d28680 0255312 e4bb553 16a1159 a44a96e e4bb553 b4dce55 a44a96e ed9d7e4 a44a96e 22103ee ba2c044 7c83c02 d683bb2 e4af1e5 4eeb69c e4af1e5 7fd8d10 e4af1e5 2135b2d e4af1e5 f4d3c9c 54674a9 32da55f c666df6 7c83c02 e2ca088 7c83c02 6557d36 1d28680 55304ba 2cd09c0 2dca59a 0109b82 f4d3c9c bc502f4 d1852d8 c6b230f 7c83c02 0109b82 f4d3c9c 7c83c02 d1852d8 c6b230f 7c83c02 2cd09c0 1d28680 0255312 1d28680 a44a96e 0255312 a44a96e 4eeb69c 8f302de 7c83c02 b1a17a2 196151e b1a17a2 25dd275 b1a17a2 54674a9 25dd275 b1a17a2 25dd275 b1a17a2 54674a9 25dd275 b1a17a2 25dd275 b1a17a2 54674a9 25dd275 b1a17a2 25dd275 b1a17a2 54674a9 25dd275 b1a17a2 860d490 b1a17a2 bf4d50c b1a17a2 559d198 b1a17a2 bf7bdee b1a17a2 0ef9174 b1a17a2 59e24b7 b1a17a2 59e24b7 285f1d2 b1a17a2 b156503 8f302de b1a17a2 9cb6607 196151e b156503 196151e b156503 196151e b156503 ba2c044 0d259e6 ba2c044 196151e b281f5a 196151e ba2c044 7e013b3 b281f5a bca33c2 b281f5a aac86e3 ba2c044 7e013b3 b281f5a 9cb6607 a294b5c 7c83c02 196151e 7c83c02 90e7099 7c83c02 f2bc0a5 90e7099 196151e 0227006 90e7099 b1a17a2 8cb7546 d16cee2 7e013b3 d16cee2 196151e 21ddc2a 67109fc d16cee2 adb0416 61181ce d16cee2 dbfc50b 196151e 23b311a b156503 9cb6607 aac86e3 ba2c044 7e013b3 aac86e3 9cb6607 3a41fad f146d30 3a41fad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
import os
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
BOTTOM_LOGO,
CITATION_BUTTON_LABEL,
CITATION_BUTTON_LABEL_JA,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
EVALUATION_QUEUE_TEXT_JA,
INTRODUCTION_TEXT,
INTRODUCTION_TEXT_JA,
LLM_BENCHMARKS_TEXT,
LLM_BENCHMARKS_TEXT_JA,
TITLE,
TaskType,
)
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AddSpecialTokens,
AutoEvalColumn,
LLMJpEvalVersion,
ModelType,
NumFewShots,
Precision,
VllmVersion,
fields,
)
from src.envs import API, CONTENTS_REPO, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID
from src.i18n import (
CITATION_ACCORDION_LABEL,
CITATION_ACCORDION_LABEL_JA,
SELECT_ALL_BUTTON_LABEL,
SELECT_ALL_BUTTON_LABEL_JA,
SELECT_AVG_ONLY_BUTTON_LABEL,
SELECT_AVG_ONLY_BUTTON_LABEL_JA,
SELECT_NONE_BUTTON_LABEL,
SELECT_NONE_BUTTON_LABEL_JA,
)
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space() -> None:
API.restart_space(repo_id=REPO_ID)
# Space initialization
try:
snapshot_download(
repo_id=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
)
except Exception:
restart_space()
# Get dataframes
(
FINISHED_EVAL_QUEUE_DF,
RUNNING_EVAL_QUEUE_DF,
PENDING_EVAL_QUEUE_DF,
FAILED_EVAL_QUEUE_DF,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
try:
ORIGINAL_DF = get_leaderboard_df(CONTENTS_REPO, COLS, BENCHMARK_COLS)
except Exception as e:
print(f"Error getting leaderboard df: {e}")
ORIGINAL_DF = pd.DataFrame()
# Searching and filtering
def filter_models(
df: pd.DataFrame,
type_query: list[str],
size_query: list[str],
precision_query: list[str],
add_special_tokens_query: list[str],
num_few_shots_query: list[int],
version_query: list[str],
vllm_query: list[str],
) -> pd.DataFrame:
# Filter by model type
type_emoji = [t.split()[0] for t in type_query]
df = df[df["T"].isin(type_emoji)]
# Filter by precision
df = df[df["Precision"].isin(precision_query)]
# Filter by model size
# Note: When `df` is empty, `size_mask` is empty, and the shape of `df[size_mask]` becomes (0, 0),
# so we need to check the length of `df` before applying the filter.
if len(df) > 0:
size_mask = df["#Params (B)"].apply(
lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != "Unknown")
)
if "Unknown" in size_query:
size_mask |= df["#Params (B)"].isna() | (df["#Params (B)"] == 0)
df = df[size_mask]
# Filter by special tokens setting
df = df[df["Add Special Tokens"].isin(add_special_tokens_query)]
# Filter by number of few-shot examples
df = df[df["Few-shot"].isin(num_few_shots_query)]
# Filter by evaluator version
df = df[df["llm-jp-eval version"].isin(version_query)]
# Filter by vLLM version
df = df[df["vllm version"].isin(vllm_query)]
return df
def search_model_by_name(df: pd.DataFrame, model_name: str) -> pd.DataFrame:
return df[df[AutoEvalColumn.dummy.name].str.contains(model_name, case=False)]
def search_models_by_multiple_names(df: pd.DataFrame, search_text: str) -> pd.DataFrame:
if not search_text:
return df
model_names = [name.strip() for name in search_text.split(";")]
dfs = [search_model_by_name(df, name) for name in model_names if name]
return pd.concat(dfs).drop_duplicates(subset=AutoEvalColumn.row_id.name)
def select_columns(df: pd.DataFrame, columns: list[str]) -> pd.DataFrame:
always_here_cols = [
AutoEvalColumn.model_type_symbol.name, # 'T'
AutoEvalColumn.model.name, # 'Model'
]
# Remove 'always_here_cols' from 'columns' to avoid duplicates
columns = [c for c in columns if c not in always_here_cols]
new_columns = (
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.row_id.name]
)
# Maintain order while removing duplicates
seen = set()
unique_columns = []
for c in new_columns:
if c not in seen:
unique_columns.append(c)
seen.add(c)
# Create DataFrame with filtered columns
filtered_df = df[unique_columns]
return filtered_df
def update_table(
type_query: list[str],
precision_query: list[str],
size_query: list[str],
add_special_tokens_query: list[str],
num_few_shots_query: list[int],
version_query: list[str],
vllm_query: list[str],
query: str,
*columns,
) -> pd.DataFrame:
columns = [item for column in columns for item in column]
df = filter_models(
ORIGINAL_DF,
type_query,
size_query,
precision_query,
add_special_tokens_query,
num_few_shots_query,
version_query,
vllm_query,
)
df = search_models_by_multiple_names(df, query)
df = select_columns(df, columns)
return df
# Prepare the dataframes
INITIAL_COLUMNS = ["T"] + [
c.name for c in fields(AutoEvalColumn) if (c.never_hidden or c.displayed_by_default) and c.name != "T"
]
leaderboard_df = ORIGINAL_DF.copy()
if len(leaderboard_df) > 0:
leaderboard_df = filter_models(
leaderboard_df,
[t.to_str(" : ") for t in ModelType],
list(NUMERIC_INTERVALS.keys()),
[i.value.name for i in Precision],
[i.value.name for i in AddSpecialTokens],
[i.value for i in NumFewShots],
[i.value.name for i in LLMJpEvalVersion],
[i.value.name for i in VllmVersion],
)
leaderboard_df = select_columns(leaderboard_df, INITIAL_COLUMNS)
else:
leaderboard_df = pd.DataFrame(columns=INITIAL_COLUMNS)
# Leaderboard demo
def toggle_all_categories(action: str) -> list[gr.CheckboxGroup]:
"""Function to control all category checkboxes at once"""
results = []
for task_type in TaskType:
if task_type == TaskType.NotTask:
# Maintain existing selection for Model details
results.append(gr.CheckboxGroup())
else:
if action == "all":
# Select all
results.append(
gr.CheckboxGroup(
value=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden and not c.dummy and c.task_type == task_type
]
)
)
elif action == "none":
# Deselect all
results.append(gr.CheckboxGroup(value=[]))
elif action == "avg_only":
# Select only AVG metrics
results.append(
gr.CheckboxGroup(
value=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden
and not c.never_hidden
and c.task_type == task_type
and ((task_type == TaskType.AVG) or (task_type != TaskType.AVG and c.average))
]
)
)
return results
TASK_AVG_NAME_MAP = {
c.name: c.task_type.name for c in fields(AutoEvalColumn) if c.average and c.task_type != TaskType.AVG
}
AVG_COLUMNS = ["AVG"] + list(TASK_AVG_NAME_MAP.keys())
def plot_size_vs_score(df_filtered: pd.DataFrame) -> go.Figure:
df = ORIGINAL_DF[ORIGINAL_DF[AutoEvalColumn.row_id.name].isin(df_filtered[AutoEvalColumn.row_id.name])]
df = df[df["#Params (B)"] > 0]
df = df[["model_name_for_query", "#Params (B)", "Few-shot"] + AVG_COLUMNS]
df = df.rename(columns={"model_name_for_query": "Model", "Few-shot": "n-shot"})
df["model_name_without_org_name"] = df["Model"].str.split("/").str[-1] + " (" + df["n-shot"].astype(str) + "-shot)"
df = pd.melt(
df,
id_vars=["Model", "model_name_without_org_name", "#Params (B)", "n-shot"],
value_vars=AVG_COLUMNS,
var_name="Category",
value_name="Score",
)
max_model_size = df["#Params (B)"].max()
fig = px.scatter(
df,
x="#Params (B)",
y="Score",
text="model_name_without_org_name",
color="Category",
hover_data=["Model", "n-shot", "Category"],
)
fig.update_traces(
hovertemplate="<b>%{customdata[0]}</b><br>#Params: %{x:.2f}B<br>n-shot: %{customdata[1]}<br>%{customdata[2]}: %{y:.4f}<extra></extra>",
textposition="top right",
mode="markers",
)
for trace in fig.data:
if trace.name != "AVG":
trace.visible = "legendonly"
fig.update_layout(xaxis_range=[0, max_model_size * 1.2], yaxis_range=[0, 1])
fig.update_layout(
updatemenus=[
dict(
type="buttons",
direction="left",
showactive=True,
buttons=[
dict(label="Hide Labels", method="update", args=[{"mode": ["markers"]}]),
dict(label="Show Labels", method="update", args=[{"mode": ["markers+text"]}]),
],
x=0.5,
y=-0.2,
xanchor="center",
yanchor="top",
)
]
)
return fig
def plot_average_scores(df_filtered: pd.DataFrame) -> go.Figure:
df = ORIGINAL_DF[ORIGINAL_DF[AutoEvalColumn.row_id.name].isin(df_filtered[AutoEvalColumn.row_id.name])]
df = df[["model_name_for_query", "Few-shot"] + list(TASK_AVG_NAME_MAP.keys())]
df = df.rename(columns={"model_name_for_query": "Model", "Few-shot": "n-shot"})
df = df.rename(columns=TASK_AVG_NAME_MAP)
df = df.set_index(["Model", "n-shot"])
fig = go.Figure()
for i, ((name, n_shot), row) in enumerate(df.iterrows()):
visible = True if i < 2 else "legendonly" # Display only the first 2 models
fig.add_trace(
go.Scatterpolar(
r=row.values,
theta=row.index,
fill="toself",
name=f"{name} ({n_shot}-shot)",
hovertemplate="%{theta}: %{r}",
visible=visible,
)
)
fig.update_layout(
polar={
"radialaxis": {"range": [0, 1]},
},
showlegend=True,
)
return fig
shown_columns_dict: dict[str, gr.CheckboxGroup] = {}
checkboxes: list[gr.CheckboxGroup] = []
with gr.Blocks() as demo_leaderboard:
with gr.Row():
search_bar = gr.Textbox(
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Accordion("Column Filter", open=True):
with gr.Row():
with gr.Row():
select_all_button = gr.Button(SELECT_ALL_BUTTON_LABEL_JA, size="sm")
select_none_button = gr.Button(SELECT_NONE_BUTTON_LABEL_JA, size="sm")
select_avg_only_button = gr.Button(SELECT_AVG_ONLY_BUTTON_LABEL_JA, size="sm")
for task_type in TaskType:
if task_type == TaskType.NotTask:
label = "Model details"
else:
label = task_type.value
with gr.Accordion(label, open=True, elem_classes="accordion"):
with gr.Row(height=110):
shown_column = gr.CheckboxGroup(
show_label=False,
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden and not c.dummy and c.task_type == task_type
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default
and not c.hidden
and not c.never_hidden
and c.task_type == task_type
],
elem_id="column-select",
container=False,
)
shown_columns_dict[task_type.name] = shown_column
checkboxes.append(shown_column)
with gr.Accordion("Model Filter", open=True):
with gr.Row():
filter_columns_type = gr.CheckboxGroup(
label="Model types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
elem_id="filter-columns-type",
)
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=[i.value.name for i in Precision],
value=[i.value.name for i in Precision],
elem_id="filter-columns-precision",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
elem_id="filter-columns-size",
)
filter_columns_add_special_tokens = gr.CheckboxGroup(
label="Add Special Tokens",
choices=[i.value.name for i in AddSpecialTokens],
value=[i.value.name for i in AddSpecialTokens],
elem_id="filter-columns-add-special-tokens",
)
filter_columns_num_few_shots = gr.CheckboxGroup(
label="Num Few Shots",
choices=[i.value for i in NumFewShots],
value=[i.value for i in NumFewShots],
elem_id="filter-columns-num-few-shots",
)
filter_columns_version = gr.CheckboxGroup(
label="llm-jp-eval version",
choices=[i.value.name for i in LLMJpEvalVersion],
value=[i.value.name for i in LLMJpEvalVersion],
elem_id="filter-columns-version",
)
filter_columns_vllm = gr.CheckboxGroup(
label="vllm version",
choices=[i.value.name for i in VllmVersion],
value=[i.value.name for i in VllmVersion],
elem_id="filter-columns-vllm",
)
leaderboard_table = gr.Dataframe(
value=leaderboard_df,
headers=INITIAL_COLUMNS,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
graph_size_vs_score = gr.Plot(label="Size vs. Score")
graph_average_scores = gr.Plot(label="Performance across Task Categories")
select_all_button.click(
fn=lambda: toggle_all_categories("all"),
outputs=checkboxes,
api_name=False,
queue=False,
)
select_none_button.click(
fn=lambda: toggle_all_categories("none"),
outputs=checkboxes,
api_name=False,
queue=False,
)
select_avg_only_button.click(
fn=lambda: toggle_all_categories("avg_only"),
outputs=checkboxes,
api_name=False,
queue=False,
)
gr.on(
triggers=[
filter_columns_type.change,
filter_columns_precision.change,
filter_columns_size.change,
filter_columns_add_special_tokens.change,
filter_columns_num_few_shots.change,
filter_columns_version.change,
filter_columns_vllm.change,
search_bar.submit,
]
+ [shown_columns.change for shown_columns in shown_columns_dict.values()],
fn=update_table,
inputs=[
filter_columns_type,
filter_columns_precision,
filter_columns_size,
filter_columns_add_special_tokens,
filter_columns_num_few_shots,
filter_columns_version,
filter_columns_vllm,
search_bar,
]
+ [shown_columns for shown_columns in shown_columns_dict.values()],
outputs=leaderboard_table,
)
leaderboard_table.change(
fn=plot_size_vs_score,
inputs=leaderboard_table,
outputs=graph_size_vs_score,
api_name=False,
queue=False,
)
leaderboard_table.change(
fn=plot_average_scores,
inputs=leaderboard_table,
outputs=graph_average_scores,
api_name=False,
queue=False,
)
# Submission demo
with gr.Blocks() as demo_submission:
with gr.Column():
with gr.Row():
evaluation_queue_text = gr.Markdown(EVALUATION_QUEUE_TEXT_JA, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(FINISHED_EVAL_QUEUE_DF)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.Dataframe(
value=FINISHED_EVAL_QUEUE_DF,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({len(RUNNING_EVAL_QUEUE_DF)})",
open=False,
):
with gr.Row():
running_eval_table = gr.Dataframe(
value=RUNNING_EVAL_QUEUE_DF,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(PENDING_EVAL_QUEUE_DF)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.Dataframe(
value=PENDING_EVAL_QUEUE_DF,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β Failed Evaluation Queue ({len(FAILED_EVAL_QUEUE_DF)})",
open=False,
):
with gr.Row():
failed_eval_table = gr.Dataframe(
value=FAILED_EVAL_QUEUE_DF,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
label="Model type",
choices=[t.to_str(" : ") for t in ModelType],
multiselect=False,
value=None,
)
with gr.Column():
precision = gr.Dropdown(
label="Precision",
choices=[i.value.name for i in Precision] + ["auto"],
multiselect=False,
value="auto",
)
add_special_tokens = gr.Dropdown(
label="AddSpecialTokens",
choices=[i.value.name for i in AddSpecialTokens],
multiselect=False,
value="False",
)
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
fn=add_new_eval,
inputs=[
model_name_textbox,
revision_name_textbox,
precision,
model_type,
add_special_tokens,
],
outputs=submission_result,
)
# Main demo
def set_default_language(request: gr.Request) -> gr.Radio:
if request.headers["Accept-Language"].split(",")[0].lower().startswith("ja"):
return gr.Radio(value="π―π΅ JA")
else:
return gr.Radio(value="πΊπΈ EN")
def update_language(
language: str,
) -> tuple[
gr.Markdown, # introduction_text
gr.Markdown, # llm_benchmarks_text
gr.Markdown, # evaluation_queue_text
gr.Textbox, # citation_button
gr.Button, # select_all_button
gr.Button, # select_none_button
gr.Button, # select_avg_only_button
gr.Accordion, # citation_accordion
]:
if language == "π―π΅ JA":
return (
gr.Markdown(value=INTRODUCTION_TEXT_JA),
gr.Markdown(value=LLM_BENCHMARKS_TEXT_JA),
gr.Markdown(value=EVALUATION_QUEUE_TEXT_JA),
gr.Textbox(label=CITATION_BUTTON_LABEL_JA),
gr.Button(value=SELECT_ALL_BUTTON_LABEL_JA),
gr.Button(value=SELECT_NONE_BUTTON_LABEL_JA),
gr.Button(value=SELECT_AVG_ONLY_BUTTON_LABEL_JA),
gr.Accordion(label=CITATION_ACCORDION_LABEL_JA),
)
else:
return (
gr.Markdown(value=INTRODUCTION_TEXT),
gr.Markdown(value=LLM_BENCHMARKS_TEXT),
gr.Markdown(value=EVALUATION_QUEUE_TEXT),
gr.Textbox(label=CITATION_BUTTON_LABEL),
gr.Button(value=SELECT_ALL_BUTTON_LABEL),
gr.Button(value=SELECT_NONE_BUTTON_LABEL),
gr.Button(value=SELECT_AVG_ONLY_BUTTON_LABEL),
gr.Accordion(label=CITATION_ACCORDION_LABEL),
)
with gr.Blocks(css_paths="style.css", theme=gr.themes.Glass()) as demo:
gr.HTML(TITLE)
introduction_text = gr.Markdown(INTRODUCTION_TEXT_JA, elem_classes="markdown-text")
with gr.Tabs() as tabs:
with gr.Tab("π
LLM Benchmark", elem_id="llm-benchmark-tab-table"):
demo_leaderboard.render()
with gr.Tab("π About", elem_id="llm-benchmark-tab-about"):
llm_benchmarks_text = gr.Markdown(LLM_BENCHMARKS_TEXT_JA, elem_classes="markdown-text")
with gr.Tab("π Submit here! ", elem_id="llm-benchmark-tab-submit"):
demo_submission.render()
with gr.Row():
with gr.Accordion(CITATION_ACCORDION_LABEL_JA, open=False) as citation_accordion:
citation_button = gr.Textbox(
label=CITATION_BUTTON_LABEL_JA,
value=CITATION_BUTTON_TEXT,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
gr.HTML(BOTTOM_LOGO)
language = gr.Radio(
choices=["π―π΅ JA", "πΊπΈ EN"],
value="π―π΅ JA",
elem_classes="language-selector",
show_label=False,
container=False,
)
demo.load(fn=set_default_language, outputs=language)
language.change(
fn=update_language,
inputs=language,
outputs=[
introduction_text,
llm_benchmarks_text,
evaluation_queue_text,
citation_button,
select_all_button,
select_none_button,
select_avg_only_button,
citation_accordion,
],
api_name=False,
)
if __name__ == "__main__":
if os.getenv("SPACE_ID"):
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|