hysts HF staff commited on
Commit
d79378a
·
1 Parent(s): 09cabca

Avoid error when the contents repo is empty

Browse files
Files changed (1) hide show
  1. app.py +22 -16
app.py CHANGED
@@ -78,8 +78,13 @@ except Exception:
78
  FAILED_EVAL_QUEUE_DF,
79
  ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
80
 
81
- ORIGINAL_DF = get_leaderboard_df(CONTENTS_REPO, COLS, BENCHMARK_COLS)
82
- MAX_MODEL_SIZE = ORIGINAL_DF["#Params (B)"].max()
 
 
 
 
 
83
 
84
 
85
  # Searching and filtering
@@ -195,23 +200,24 @@ def update_table(
195
  # Prepare the dataframes
196
 
197
 
198
- leaderboard_df = ORIGINAL_DF.copy()
199
- leaderboard_df = filter_models(
200
- leaderboard_df,
201
- [t.to_str(" : ") for t in ModelType],
202
- list(NUMERIC_INTERVALS.keys()),
203
- [i.value.name for i in Precision],
204
- [i.value.name for i in AddSpecialTokens],
205
- [i.value.name for i in NumFewShots],
206
- [i.value.name for i in LLMJpEvalVersion],
207
- [i.value.name for i in VllmVersion],
208
- )
209
- # Initialize columns
210
  INITIAL_COLUMNS = ["T"] + [
211
  c.name for c in fields(AutoEvalColumn) if (c.never_hidden or c.displayed_by_default) and c.name != "T"
212
  ]
213
- leaderboard_df = select_columns(leaderboard_df, INITIAL_COLUMNS)
214
-
 
 
 
 
 
 
 
 
 
 
 
 
 
215
 
216
  # Leaderboard demo
217
 
 
78
  FAILED_EVAL_QUEUE_DF,
79
  ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
80
 
81
+ try:
82
+ ORIGINAL_DF = get_leaderboard_df(CONTENTS_REPO, COLS, BENCHMARK_COLS)
83
+ MAX_MODEL_SIZE = ORIGINAL_DF["#Params (B)"].max()
84
+ except Exception as e:
85
+ print(f"Error getting leaderboard df: {e}")
86
+ ORIGINAL_DF = pd.DataFrame()
87
+ MAX_MODEL_SIZE = 0
88
 
89
 
90
  # Searching and filtering
 
200
  # Prepare the dataframes
201
 
202
 
 
 
 
 
 
 
 
 
 
 
 
 
203
  INITIAL_COLUMNS = ["T"] + [
204
  c.name for c in fields(AutoEvalColumn) if (c.never_hidden or c.displayed_by_default) and c.name != "T"
205
  ]
206
+ leaderboard_df = ORIGINAL_DF.copy()
207
+ if len(leaderboard_df) > 0:
208
+ leaderboard_df = filter_models(
209
+ leaderboard_df,
210
+ [t.to_str(" : ") for t in ModelType],
211
+ list(NUMERIC_INTERVALS.keys()),
212
+ [i.value.name for i in Precision],
213
+ [i.value.name for i in AddSpecialTokens],
214
+ [i.value.name for i in NumFewShots],
215
+ [i.value.name for i in LLMJpEvalVersion],
216
+ [i.value.name for i in VllmVersion],
217
+ )
218
+ leaderboard_df = select_columns(leaderboard_df, INITIAL_COLUMNS)
219
+ else:
220
+ leaderboard_df = pd.DataFrame(columns=INITIAL_COLUMNS)
221
 
222
  # Leaderboard demo
223