Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -53,6 +53,9 @@ except Exception:
|
|
53 |
restart_space()
|
54 |
|
55 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
|
|
|
|
|
|
56 |
original_df = LEADERBOARD_DF
|
57 |
leaderboard_df = original_df.copy()
|
58 |
(
|
@@ -76,12 +79,23 @@ def update_table(
|
|
76 |
show_flagged: bool,
|
77 |
query: str,
|
78 |
):
|
|
|
|
|
|
|
79 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
|
|
|
|
80 |
filtered_df = filter_queries(query, filtered_df)
|
|
|
|
|
81 |
print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
82 |
-
print(
|
|
|
83 |
|
84 |
df = select_columns(filtered_df, columns)
|
|
|
|
|
|
|
85 |
return df
|
86 |
|
87 |
|
@@ -129,29 +143,37 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
129 |
def filter_models(
|
130 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
131 |
) -> pd.DataFrame:
|
132 |
-
|
|
|
|
|
|
|
133 |
if show_deleted:
|
134 |
filtered_df = df
|
135 |
-
else:
|
136 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
137 |
-
|
138 |
-
#if not show_merges:
|
139 |
-
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
|
140 |
-
|
141 |
-
#if not show_flagged:
|
142 |
-
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
|
143 |
|
144 |
type_emoji = [t[0] for t in type_query]
|
145 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
|
|
|
|
146 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
|
|
|
|
147 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
|
|
|
|
|
148 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
|
149 |
-
|
150 |
|
151 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
152 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
153 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
154 |
filtered_df = filtered_df.loc[mask]
|
|
|
|
|
|
|
|
|
155 |
return filtered_df
|
156 |
|
157 |
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
@@ -248,7 +270,9 @@ with demo:
|
|
248 |
visible=True,
|
249 |
#column_widths=["2%", "33%"]
|
250 |
)
|
251 |
-
print(
|
|
|
|
|
252 |
|
253 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
254 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
|
|
53 |
restart_space()
|
54 |
|
55 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
56 |
+
print("Initial LEADERBOARD_DF:")
|
57 |
+
print(LEADERBOARD_DF.head())
|
58 |
+
print(f"LEADERBOARD_DF shape: {LEADERBOARD_DF.shape}")
|
59 |
original_df = LEADERBOARD_DF
|
60 |
leaderboard_df = original_df.copy()
|
61 |
(
|
|
|
79 |
show_flagged: bool,
|
80 |
query: str,
|
81 |
):
|
82 |
+
print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}")
|
83 |
+
print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
84 |
+
|
85 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
86 |
+
print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
87 |
+
|
88 |
filtered_df = filter_queries(query, filtered_df)
|
89 |
+
print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
|
90 |
+
|
91 |
print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
92 |
+
print("Filtered dataframe head:")
|
93 |
+
print(filtered_df.head())
|
94 |
|
95 |
df = select_columns(filtered_df, columns)
|
96 |
+
print(f"Final df shape: {df.shape}")
|
97 |
+
print("Final dataframe head:")
|
98 |
+
print(df.head())
|
99 |
return df
|
100 |
|
101 |
|
|
|
143 |
def filter_models(
|
144 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
145 |
) -> pd.DataFrame:
|
146 |
+
print(f"filter_models called with: type_query={type_query}, size_query={size_query}, precision_query={precision_query}")
|
147 |
+
print(f"Initial df shape: {df.shape}")
|
148 |
+
|
149 |
+
# 各フィルタリング操作の後にprint文を追加
|
150 |
if show_deleted:
|
151 |
filtered_df = df
|
152 |
+
else:
|
153 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
154 |
+
print(f"After deletion filter: {filtered_df.shape}")
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
type_emoji = [t[0] for t in type_query]
|
157 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
158 |
+
print(f"After type filter: {filtered_df.shape}")
|
159 |
+
|
160 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
161 |
+
print(f"After precision filter: {filtered_df.shape}")
|
162 |
+
|
163 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
|
164 |
+
print(f"After add_special_tokens filter: {filtered_df.shape}")
|
165 |
+
|
166 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
|
167 |
+
print(f"After num_few_shots filter: {filtered_df.shape}")
|
168 |
|
169 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
170 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
171 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
172 |
filtered_df = filtered_df.loc[mask]
|
173 |
+
print(f"After size filter: {filtered_df.shape}")
|
174 |
+
|
175 |
+
print("Filtered dataframe head:")
|
176 |
+
print(filtered_df.head())
|
177 |
return filtered_df
|
178 |
|
179 |
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
|
|
270 |
visible=True,
|
271 |
#column_widths=["2%", "33%"]
|
272 |
)
|
273 |
+
print("Leaderboard table initial value:")
|
274 |
+
print(leaderboard_table.value.head())
|
275 |
+
print(f"Leaderboard table shape: {leaderboard_table.value.shape}")
|
276 |
|
277 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
278 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|