File size: 23,943 Bytes
f146d30
 
9346f1c
 
1d28680
 
4596a70
2a5f9fb
 
1ffc326
0f09631
8c49cb6
196151e
8c49cb6
 
196151e
8c49cb6
196151e
8c49cb6
196151e
8c49cb6
d1852d8
8c49cb6
df66f6e
 
 
 
 
0f09631
 
 
df66f6e
2135b2d
df66f6e
9c999fc
0f09631
f4d3c9c
0f09631
df66f6e
99a4ea0
0d259e6
 
 
 
 
 
 
 
 
 
df66f6e
 
8c49cb6
57cc619
0c74571
50df158
d084b26
57cc619
5904ab6
d084b26
 
285f1d2
 
 
 
 
d084b26
 
 
2be444d
57cc619
25dd275
 
 
 
 
 
 
 
 
d79378a
 
 
 
 
 
 
25dd275
 
016c2e7
50419e9
 
 
 
28bab67
 
 
 
7fd8d10
28bab67
 
50419e9
e9ff778
50419e9
081a68a
57cc619
e9ff778
081a68a
4a39b37
e9ff778
fe7e796
 
5df655f
 
 
 
 
 
 
e36d99d
e9ff778
081a68a
96fd777
e9ff778
7fd8d10
50419e9
e9ff778
081a68a
0109b82
e9ff778
081a68a
f4d3c9c
081a68a
016c2e7
 
7271587
 
 
 
 
 
 
 
 
 
047f6fc
285f1d2
3c021a4
016c2e7
da97add
285f1d2
016c2e7
57cc619
2bc7f4f
047f6fc
dc8017a
 
 
57cc619
2bc7f4f
da97add
 
 
 
 
 
e647d43
2bc7f4f
da97add
8604d8b
016c2e7
e647d43
50419e9
89d26b4
 
 
 
7fd8d10
89d26b4
 
50419e9
d1852d8
0c74571
d1852d8
f42c85a
0255312
50419e9
 
 
 
 
0109b82
f4d3c9c
50419e9
f42c85a
 
50419e9
1ea4467
3437d98
7ec9c70
676db2b
0556b59
c666df6
285f1d2
 
d79378a
 
 
 
 
 
 
 
7fd8d10
d79378a
 
 
 
 
 
676db2b
8f302de
 
ba2c044
8c936c3
2bc7f4f
8c936c3
 
 
2bc7f4f
8c936c3
 
 
2bc7f4f
8c936c3
 
 
 
 
 
 
 
 
 
2bc7f4f
8c936c3
 
2bc7f4f
8c936c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54d2632
 
 
16a1159
54d2632
 
0255312
 
e4bb553
54d2632
e4bb553
99a4ea0
54d2632
 
 
 
2e5629e
54d2632
 
c106bef
e4bb553
c106bef
54d2632
c106bef
2e5629e
 
c106bef
 
54d2632
c106bef
 
54d2632
 
 
c3e14be
2a4320e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d28680
 
 
0255312
 
e4bb553
 
 
16a1159
a44a96e
 
e4bb553
b4dce55
a44a96e
 
 
 
 
ed9d7e4
a44a96e
 
 
 
 
 
 
 
 
 
 
 
 
22103ee
 
ba2c044
7c83c02
 
d683bb2
 
 
 
 
e4af1e5
4eeb69c
e4af1e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fd8d10
 
e4af1e5
 
 
 
2135b2d
 
e4af1e5
 
f4d3c9c
 
 
 
 
 
 
54674a9
32da55f
c666df6
7c83c02
 
 
e2ca088
7c83c02
 
6557d36
 
1d28680
55304ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd09c0
2dca59a
 
 
 
 
 
0109b82
f4d3c9c
bc502f4
d1852d8
 
c6b230f
 
7c83c02
 
 
 
 
0109b82
f4d3c9c
7c83c02
d1852d8
 
c6b230f
7c83c02
2cd09c0
1d28680
 
0255312
1d28680
 
 
 
 
a44a96e
 
0255312
a44a96e
 
 
 
 
4eeb69c
8f302de
7c83c02
b1a17a2
 
 
196151e
b1a17a2
 
 
25dd275
b1a17a2
 
 
54674a9
25dd275
b1a17a2
 
 
 
 
25dd275
b1a17a2
 
 
54674a9
25dd275
b1a17a2
 
 
 
 
 
25dd275
b1a17a2
 
 
54674a9
25dd275
b1a17a2
 
 
 
 
25dd275
b1a17a2
 
 
54674a9
25dd275
b1a17a2
 
 
 
 
 
 
 
 
 
 
 
 
860d490
b1a17a2
bf4d50c
b1a17a2
 
 
 
 
860d490
b1a17a2
bf7bdee
b1a17a2
 
 
0ef9174
b1a17a2
 
 
 
 
 
 
59e24b7
 
b1a17a2
 
 
 
 
 
59e24b7
285f1d2
b1a17a2
b156503
8f302de
b1a17a2
9cb6607
196151e
b156503
196151e
b156503
196151e
b156503
 
ba2c044
 
 
0d259e6
 
 
 
 
 
 
 
ba2c044
196151e
b281f5a
196151e
 
 
 
ba2c044
 
 
7e013b3
b281f5a
bca33c2
b281f5a
 
 
 
aac86e3
ba2c044
 
 
7e013b3
b281f5a
9cb6607
 
a294b5c
7c83c02
196151e
7c83c02
90e7099
 
7c83c02
f2bc0a5
90e7099
196151e
0227006
90e7099
b1a17a2
8cb7546
d16cee2
7e013b3
d16cee2
196151e
21ddc2a
67109fc
d16cee2
adb0416
 
61181ce
d16cee2
dbfc50b
196151e
 
23b311a
 
 
 
 
b156503
9cb6607
 
 
aac86e3
 
 
 
 
ba2c044
 
 
7e013b3
aac86e3
9cb6607
 
 
3a41fad
f146d30
 
 
 
3a41fad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
import os

import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    BOTTOM_LOGO,
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_LABEL_JA,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    EVALUATION_QUEUE_TEXT_JA,
    INTRODUCTION_TEXT,
    INTRODUCTION_TEXT_JA,
    LLM_BENCHMARKS_TEXT,
    LLM_BENCHMARKS_TEXT_JA,
    TITLE,
    TaskType,
)
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    NUMERIC_INTERVALS,
    TYPES,
    AddSpecialTokens,
    AutoEvalColumn,
    LLMJpEvalVersion,
    ModelType,
    NumFewShots,
    Precision,
    VllmVersion,
    fields,
)
from src.envs import API, CONTENTS_REPO, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID
from src.i18n import (
    CITATION_ACCORDION_LABEL,
    CITATION_ACCORDION_LABEL_JA,
    SELECT_ALL_BUTTON_LABEL,
    SELECT_ALL_BUTTON_LABEL_JA,
    SELECT_AVG_ONLY_BUTTON_LABEL,
    SELECT_AVG_ONLY_BUTTON_LABEL_JA,
    SELECT_NONE_BUTTON_LABEL,
    SELECT_NONE_BUTTON_LABEL_JA,
)
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval


def restart_space() -> None:
    API.restart_space(repo_id=REPO_ID)


# Space initialization
try:
    snapshot_download(
        repo_id=QUEUE_REPO,
        local_dir=EVAL_REQUESTS_PATH,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
    )
except Exception:
    restart_space()


# Get dataframes

(
    FINISHED_EVAL_QUEUE_DF,
    RUNNING_EVAL_QUEUE_DF,
    PENDING_EVAL_QUEUE_DF,
    FAILED_EVAL_QUEUE_DF,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

try:
    ORIGINAL_DF = get_leaderboard_df(CONTENTS_REPO, COLS, BENCHMARK_COLS)
    MAX_MODEL_SIZE = ORIGINAL_DF["#Params (B)"].max()
except Exception as e:
    print(f"Error getting leaderboard df: {e}")
    ORIGINAL_DF = pd.DataFrame()
    MAX_MODEL_SIZE = 0


# Searching and filtering


def filter_models(
    df: pd.DataFrame,
    type_query: list[str],
    size_query: list[str],
    precision_query: list[str],
    add_special_tokens_query: list[str],
    num_few_shots_query: list[int],
    version_query: list[str],
    vllm_query: list[str],
) -> pd.DataFrame:
    # Filter by model type
    type_emoji = [t.split()[0] for t in type_query]
    df = df[df["T"].isin(type_emoji)]

    # Filter by precision
    df = df[df["Precision"].isin(precision_query)]

    # Filter by model size
    # Note: When `df` is empty, `size_mask` is empty, and the shape of `df[size_mask]` becomes (0, 0),
    # so we need to check the length of `df` before applying the filter.
    if len(df) > 0:
        size_mask = df["#Params (B)"].apply(
            lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != "Unknown")
        )
        if "Unknown" in size_query:
            size_mask |= df["#Params (B)"].isna() | (df["#Params (B)"] == 0)
        df = df[size_mask]

    # Filter by special tokens setting
    df = df[df["Add Special Tokens"].isin(add_special_tokens_query)]

    # Filter by number of few-shot examples
    df = df[df["Few-shot"].isin(num_few_shots_query)]

    # Filter by evaluator version
    df = df[df["llm-jp-eval version"].isin(version_query)]

    # Filter by vLLM version
    df = df[df["vllm version"].isin(vllm_query)]

    return df


def search_model_by_name(df: pd.DataFrame, model_name: str) -> pd.DataFrame:
    return df[df[AutoEvalColumn.dummy.name].str.contains(model_name, case=False)]


def search_models_by_multiple_names(df: pd.DataFrame, search_text: str) -> pd.DataFrame:
    if not search_text:
        return df
    model_names = [name.strip() for name in search_text.split(";")]
    dfs = [search_model_by_name(df, name) for name in model_names if name]
    return pd.concat(dfs).drop_duplicates(subset=AutoEvalColumn.row_id.name)


def select_columns(df: pd.DataFrame, columns: list[str]) -> pd.DataFrame:
    always_here_cols = [
        AutoEvalColumn.model_type_symbol.name,  # 'T'
        AutoEvalColumn.model.name,  # 'Model'
    ]

    # Remove 'always_here_cols' from 'columns' to avoid duplicates
    columns = [c for c in columns if c not in always_here_cols]
    new_columns = (
        always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.row_id.name]
    )

    # Maintain order while removing duplicates
    seen = set()
    unique_columns = []
    for c in new_columns:
        if c not in seen:
            unique_columns.append(c)
            seen.add(c)

    # Create DataFrame with filtered columns
    filtered_df = df[unique_columns]
    return filtered_df


def update_table(
    type_query: list[str],
    precision_query: list[str],
    size_query: list[str],
    add_special_tokens_query: list[str],
    num_few_shots_query: list[int],
    version_query: list[str],
    vllm_query: list[str],
    query: str,
    *columns,
) -> pd.DataFrame:
    columns = [item for column in columns for item in column]
    df = filter_models(
        ORIGINAL_DF,
        type_query,
        size_query,
        precision_query,
        add_special_tokens_query,
        num_few_shots_query,
        version_query,
        vllm_query,
    )
    df = search_models_by_multiple_names(df, query)
    df = select_columns(df, columns)
    return df


# Prepare the dataframes


INITIAL_COLUMNS = ["T"] + [
    c.name for c in fields(AutoEvalColumn) if (c.never_hidden or c.displayed_by_default) and c.name != "T"
]
leaderboard_df = ORIGINAL_DF.copy()
if len(leaderboard_df) > 0:
    leaderboard_df = filter_models(
        leaderboard_df,
        [t.to_str(" : ") for t in ModelType],
        list(NUMERIC_INTERVALS.keys()),
        [i.value.name for i in Precision],
        [i.value.name for i in AddSpecialTokens],
        [i.value for i in NumFewShots],
        [i.value.name for i in LLMJpEvalVersion],
        [i.value.name for i in VllmVersion],
    )
    leaderboard_df = select_columns(leaderboard_df, INITIAL_COLUMNS)
else:
    leaderboard_df = pd.DataFrame(columns=INITIAL_COLUMNS)

# Leaderboard demo


def toggle_all_categories(action: str) -> list[gr.CheckboxGroup]:
    """Function to control all category checkboxes at once"""
    results = []
    for task_type in TaskType:
        if task_type == TaskType.NotTask:
            # Maintain existing selection for Model details
            results.append(gr.CheckboxGroup())
        else:
            if action == "all":
                # Select all
                results.append(
                    gr.CheckboxGroup(
                        value=[
                            c.name
                            for c in fields(AutoEvalColumn)
                            if not c.hidden and not c.never_hidden and not c.dummy and c.task_type == task_type
                        ]
                    )
                )
            elif action == "none":
                # Deselect all
                results.append(gr.CheckboxGroup(value=[]))
            elif action == "avg_only":
                # Select only AVG metrics
                results.append(
                    gr.CheckboxGroup(
                        value=[
                            c.name
                            for c in fields(AutoEvalColumn)
                            if not c.hidden
                            and not c.never_hidden
                            and c.task_type == task_type
                            and ((task_type == TaskType.AVG) or (task_type != TaskType.AVG and c.average))
                        ]
                    )
                )
    return results


TASK_AVG_NAME_MAP = {
    c.name: c.task_type.name for c in fields(AutoEvalColumn) if c.average and c.task_type != TaskType.AVG
}
AVG_COLUMNS = ["AVG"] + list(TASK_AVG_NAME_MAP.keys())


def plot_size_vs_score(df_filtered: pd.DataFrame) -> go.Figure:
    df = ORIGINAL_DF[ORIGINAL_DF[AutoEvalColumn.row_id.name].isin(df_filtered[AutoEvalColumn.row_id.name])]
    df = df[df["#Params (B)"] > 0]
    df = df[["model_name_for_query", "#Params (B)", "Few-shot"] + AVG_COLUMNS]
    df = df.rename(columns={"model_name_for_query": "Model", "Few-shot": "n-shot"})
    df["model_name_without_org_name"] = df["Model"].str.split("/").str[-1] + " (" + df["n-shot"].astype(str) + "-shot)"
    df = pd.melt(
        df,
        id_vars=["Model", "model_name_without_org_name", "#Params (B)", "n-shot"],
        value_vars=AVG_COLUMNS,
        var_name="Category",
        value_name="Score",
    )
    fig = px.scatter(
        df,
        x="#Params (B)",
        y="Score",
        text="model_name_without_org_name",
        color="Category",
        hover_data=["Model", "n-shot", "Category"],
    )
    fig.update_traces(
        hovertemplate="<b>%{customdata[0]}</b><br>#Params: %{x:.2f}B<br>n-shot: %{customdata[1]}<br>%{customdata[2]}: %{y:.4f}<extra></extra>",
        textposition="top right",
    )
    for trace in fig.data:
        if trace.name != "AVG":
            trace.visible = "legendonly"
    fig.update_layout(xaxis_range=[0, MAX_MODEL_SIZE * 1.2], yaxis_range=[0, 1])
    fig.update_layout(
        updatemenus=[
            dict(
                type="buttons",
                direction="left",
                showactive=True,
                buttons=[
                    dict(label="Show Labels", method="update", args=[{"mode": ["markers+text"]}]),
                    dict(label="Hide Labels", method="update", args=[{"mode": ["markers"]}]),
                ],
                x=0.5,
                y=-0.2,
                xanchor="center",
                yanchor="top",
            )
        ]
    )
    return fig


def plot_average_scores(df_filtered: pd.DataFrame) -> go.Figure:
    df = ORIGINAL_DF[ORIGINAL_DF[AutoEvalColumn.row_id.name].isin(df_filtered[AutoEvalColumn.row_id.name])]
    df = df[["model_name_for_query", "Few-shot"] + list(TASK_AVG_NAME_MAP.keys())]
    df = df.rename(columns={"model_name_for_query": "Model", "Few-shot": "n-shot"})
    df = df.rename(columns=TASK_AVG_NAME_MAP)
    df = df.set_index(["Model", "n-shot"])

    fig = go.Figure()
    for i, ((name, n_shot), row) in enumerate(df.iterrows()):
        visible = True if i < 2 else "legendonly"  # Display only the first 2 models
        fig.add_trace(
            go.Scatterpolar(
                r=row.values,
                theta=row.index,
                fill="toself",
                name=f"{name} ({n_shot}-shot)",
                hovertemplate="%{theta}: %{r}",
                visible=visible,
            )
        )
    fig.update_layout(
        polar={
            "radialaxis": {"range": [0, 1]},
        },
        showlegend=True,
    )
    return fig


shown_columns_dict: dict[str, gr.CheckboxGroup] = {}
checkboxes: list[gr.CheckboxGroup] = []

with gr.Blocks() as demo_leaderboard:
    with gr.Row():
        search_bar = gr.Textbox(
            placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
            show_label=False,
            elem_id="search-bar",
        )
    with gr.Accordion("Column Filter", open=True):
        with gr.Row():
            with gr.Row():
                select_all_button = gr.Button(SELECT_ALL_BUTTON_LABEL_JA, size="sm")
                select_none_button = gr.Button(SELECT_NONE_BUTTON_LABEL_JA, size="sm")
                select_avg_only_button = gr.Button(SELECT_AVG_ONLY_BUTTON_LABEL_JA, size="sm")

            for task_type in TaskType:
                if task_type == TaskType.NotTask:
                    label = "Model details"
                else:
                    label = task_type.value
                with gr.Accordion(label, open=True, elem_classes="accordion"):
                    with gr.Row(height=110):
                        shown_column = gr.CheckboxGroup(
                            show_label=False,
                            choices=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if not c.hidden and not c.never_hidden and not c.dummy and c.task_type == task_type
                            ],
                            value=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if c.displayed_by_default
                                and not c.hidden
                                and not c.never_hidden
                                and c.task_type == task_type
                            ],
                            elem_id="column-select",
                            container=False,
                        )
                        shown_columns_dict[task_type.name] = shown_column
                        checkboxes.append(shown_column)

    with gr.Accordion("Model Filter", open=True):
        with gr.Row():
            filter_columns_type = gr.CheckboxGroup(
                label="Model types",
                choices=[t.to_str() for t in ModelType],
                value=[t.to_str() for t in ModelType],
                elem_id="filter-columns-type",
            )
            filter_columns_precision = gr.CheckboxGroup(
                label="Precision",
                choices=[i.value.name for i in Precision],
                value=[i.value.name for i in Precision],
                elem_id="filter-columns-precision",
            )
            filter_columns_size = gr.CheckboxGroup(
                label="Model sizes (in billions of parameters)",
                choices=list(NUMERIC_INTERVALS.keys()),
                value=list(NUMERIC_INTERVALS.keys()),
                elem_id="filter-columns-size",
            )
            filter_columns_add_special_tokens = gr.CheckboxGroup(
                label="Add Special Tokens",
                choices=[i.value.name for i in AddSpecialTokens],
                value=[i.value.name for i in AddSpecialTokens],
                elem_id="filter-columns-add-special-tokens",
            )
            filter_columns_num_few_shots = gr.CheckboxGroup(
                label="Num Few Shots",
                choices=[i.value for i in NumFewShots],
                value=[i.value for i in NumFewShots],
                elem_id="filter-columns-num-few-shots",
            )
            filter_columns_version = gr.CheckboxGroup(
                label="llm-jp-eval version",
                choices=[i.value.name for i in LLMJpEvalVersion],
                value=[i.value.name for i in LLMJpEvalVersion],
                elem_id="filter-columns-version",
            )
            filter_columns_vllm = gr.CheckboxGroup(
                label="vllm version",
                choices=[i.value.name for i in VllmVersion],
                value=[i.value.name for i in VllmVersion],
                elem_id="filter-columns-vllm",
            )

    leaderboard_table = gr.Dataframe(
        value=leaderboard_df,
        headers=INITIAL_COLUMNS,
        datatype=TYPES,
        elem_id="leaderboard-table",
        interactive=False,
        visible=True,
    )

    graph_size_vs_score = gr.Plot(label="Size vs. Score")
    graph_average_scores = gr.Plot(label="Performance across Task Categories")

    select_all_button.click(
        fn=lambda: toggle_all_categories("all"),
        outputs=checkboxes,
        api_name=False,
        queue=False,
    )
    select_none_button.click(
        fn=lambda: toggle_all_categories("none"),
        outputs=checkboxes,
        api_name=False,
        queue=False,
    )
    select_avg_only_button.click(
        fn=lambda: toggle_all_categories("avg_only"),
        outputs=checkboxes,
        api_name=False,
        queue=False,
    )

    gr.on(
        triggers=[
            filter_columns_type.change,
            filter_columns_precision.change,
            filter_columns_size.change,
            filter_columns_add_special_tokens.change,
            filter_columns_num_few_shots.change,
            filter_columns_version.change,
            filter_columns_vllm.change,
            search_bar.submit,
        ]
        + [shown_columns.change for shown_columns in shown_columns_dict.values()],
        fn=update_table,
        inputs=[
            filter_columns_type,
            filter_columns_precision,
            filter_columns_size,
            filter_columns_add_special_tokens,
            filter_columns_num_few_shots,
            filter_columns_version,
            filter_columns_vllm,
            search_bar,
        ]
        + [shown_columns for shown_columns in shown_columns_dict.values()],
        outputs=leaderboard_table,
    )

    leaderboard_table.change(
        fn=plot_size_vs_score,
        inputs=leaderboard_table,
        outputs=graph_size_vs_score,
        api_name=False,
        queue=False,
    )

    leaderboard_table.change(
        fn=plot_average_scores,
        inputs=leaderboard_table,
        outputs=graph_average_scores,
        api_name=False,
        queue=False,
    )


# Submission demo

with gr.Blocks() as demo_submission:
    with gr.Column():
        with gr.Row():
            evaluation_queue_text = gr.Markdown(EVALUATION_QUEUE_TEXT_JA, elem_classes="markdown-text")

        with gr.Column():
            with gr.Accordion(
                f"βœ… Finished Evaluations ({len(FINISHED_EVAL_QUEUE_DF)})",
                open=False,
            ):
                with gr.Row():
                    finished_eval_table = gr.Dataframe(
                        value=FINISHED_EVAL_QUEUE_DF,
                        headers=EVAL_COLS,
                        datatype=EVAL_TYPES,
                        row_count=5,
                    )
            with gr.Accordion(
                f"πŸ”„ Running Evaluation Queue ({len(RUNNING_EVAL_QUEUE_DF)})",
                open=False,
            ):
                with gr.Row():
                    running_eval_table = gr.Dataframe(
                        value=RUNNING_EVAL_QUEUE_DF,
                        headers=EVAL_COLS,
                        datatype=EVAL_TYPES,
                        row_count=5,
                    )

            with gr.Accordion(
                f"⏳ Pending Evaluation Queue ({len(PENDING_EVAL_QUEUE_DF)})",
                open=False,
            ):
                with gr.Row():
                    pending_eval_table = gr.Dataframe(
                        value=PENDING_EVAL_QUEUE_DF,
                        headers=EVAL_COLS,
                        datatype=EVAL_TYPES,
                        row_count=5,
                    )
            with gr.Accordion(
                f"❎ Failed Evaluation Queue ({len(FAILED_EVAL_QUEUE_DF)})",
                open=False,
            ):
                with gr.Row():
                    failed_eval_table = gr.Dataframe(
                        value=FAILED_EVAL_QUEUE_DF,
                        headers=EVAL_COLS,
                        datatype=EVAL_TYPES,
                        row_count=5,
                    )
    with gr.Row():
        gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")

    with gr.Row():
        with gr.Column():
            model_name_textbox = gr.Textbox(label="Model name")
            revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
            model_type = gr.Dropdown(
                label="Model type",
                choices=[t.to_str(" : ") for t in ModelType],
                multiselect=False,
                value=None,
            )

        with gr.Column():
            precision = gr.Dropdown(
                label="Precision",
                choices=[i.value.name for i in Precision],
                multiselect=False,
                value="auto",
            )
            add_special_tokens = gr.Dropdown(
                label="AddSpecialTokens",
                choices=[i.value.name for i in AddSpecialTokens],
                multiselect=False,
                value="False",
            )

    submit_button = gr.Button("Submit Eval")
    submission_result = gr.Markdown()
    submit_button.click(
        fn=add_new_eval,
        inputs=[
            model_name_textbox,
            revision_name_textbox,
            precision,
            model_type,
            add_special_tokens,
        ],
        outputs=submission_result,
    )


# Main demo


def set_default_language(request: gr.Request) -> gr.Radio:
    if request.headers["Accept-Language"].split(",")[0].lower().startswith("ja"):
        return gr.Radio(value="πŸ‡―πŸ‡΅ JA")
    else:
        return gr.Radio(value="πŸ‡ΊπŸ‡Έ EN")


def update_language(
    language: str,
) -> tuple[
    gr.Markdown,  # introduction_text
    gr.Markdown,  # llm_benchmarks_text
    gr.Markdown,  # evaluation_queue_text
    gr.Textbox,  # citation_button
    gr.Button,  # select_all_button
    gr.Button,  # select_none_button
    gr.Button,  # select_avg_only_button
    gr.Accordion,  # citation_accordion
]:
    if language == "πŸ‡―πŸ‡΅ JA":
        return (
            gr.Markdown(value=INTRODUCTION_TEXT_JA),
            gr.Markdown(value=LLM_BENCHMARKS_TEXT_JA),
            gr.Markdown(value=EVALUATION_QUEUE_TEXT_JA),
            gr.Textbox(label=CITATION_BUTTON_LABEL_JA),
            gr.Button(value=SELECT_ALL_BUTTON_LABEL_JA),
            gr.Button(value=SELECT_NONE_BUTTON_LABEL_JA),
            gr.Button(value=SELECT_AVG_ONLY_BUTTON_LABEL_JA),
            gr.Accordion(label=CITATION_ACCORDION_LABEL_JA),
        )
    else:
        return (
            gr.Markdown(value=INTRODUCTION_TEXT),
            gr.Markdown(value=LLM_BENCHMARKS_TEXT),
            gr.Markdown(value=EVALUATION_QUEUE_TEXT),
            gr.Textbox(label=CITATION_BUTTON_LABEL),
            gr.Button(value=SELECT_ALL_BUTTON_LABEL),
            gr.Button(value=SELECT_NONE_BUTTON_LABEL),
            gr.Button(value=SELECT_AVG_ONLY_BUTTON_LABEL),
            gr.Accordion(label=CITATION_ACCORDION_LABEL),
        )


with gr.Blocks(css_paths="style.css", theme=gr.themes.Glass()) as demo:
    gr.HTML(TITLE)
    introduction_text = gr.Markdown(INTRODUCTION_TEXT_JA, elem_classes="markdown-text")

    with gr.Tabs() as tabs:
        with gr.Tab("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table"):
            demo_leaderboard.render()

        with gr.Tab("πŸ“ About", elem_id="llm-benchmark-tab-about"):
            llm_benchmarks_text = gr.Markdown(LLM_BENCHMARKS_TEXT_JA, elem_classes="markdown-text")

        with gr.Tab("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-submit"):
            demo_submission.render()

    with gr.Row():
        with gr.Accordion(CITATION_ACCORDION_LABEL_JA, open=False) as citation_accordion:
            citation_button = gr.Textbox(
                label=CITATION_BUTTON_LABEL_JA,
                value=CITATION_BUTTON_TEXT,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )
    gr.HTML(BOTTOM_LOGO)

    language = gr.Radio(
        choices=["πŸ‡―πŸ‡΅ JA", "πŸ‡ΊπŸ‡Έ EN"],
        value="πŸ‡―πŸ‡΅ JA",
        elem_classes="language-selector",
        show_label=False,
        container=False,
    )

    demo.load(fn=set_default_language, outputs=language)
    language.change(
        fn=update_language,
        inputs=language,
        outputs=[
            introduction_text,
            llm_benchmarks_text,
            evaluation_queue_text,
            citation_button,
            select_all_button,
            select_none_button,
            select_avg_only_button,
            citation_accordion,
        ],
        api_name=False,
    )

if __name__ == "__main__":
    if os.getenv("SPACE_ID"):
        scheduler = BackgroundScheduler()
        scheduler.add_job(restart_space, "interval", seconds=1800)
        scheduler.start()
    demo.queue(default_concurrency_limit=40).launch()