Spaces:
Sleeping
Sleeping
File size: 64,523 Bytes
5203d64 85db45c 5203d64 1a79594 5203d64 5d7f498 1cb9a01 5203d64 1cb9a01 5203d64 1cb9a01 5203d64 202c68f 5203d64 202c68f 5203d64 1a79594 5203d64 1a79594 5203d64 8635750 6795023 85db45c 5203d64 d358aa1 5203d64 85db45c 5203d64 d358aa1 5203d64 202c68f 5203d64 202c68f 5203d64 202c68f 5203d64 202c68f 5203d64 1a79594 5203d64 85db45c 5203d64 85db45c 5203d64 538f801 064f5bc 5203d64 80e3992 268fba4 5203d64 85db45c 5203d64 d9af17f 5203d64 d9af17f 5203d64 85db45c 5203d64 85db45c 5203d64 85db45c 5203d64 85db45c 5203d64 d9af17f 5203d64 85db45c 5203d64 d9af17f 5203d64 85db45c 5203d64 329aee5 064f5bc 85db45c 329aee5 064f5bc 85db45c 5203d64 ae7cc47 85db45c 5203d64 6317f73 5203d64 d358aa1 202c68f d358aa1 202c68f d358aa1 4702916 d358aa1 4702916 d358aa1 4702916 d358aa1 202c68f d358aa1 85db45c d358aa1 85db45c d358aa1 202c68f 5203d64 85db45c 5203d64 85db45c 5203d64 85db45c 5203d64 0c9757e 85db45c 5203d64 6795023 85db45c 5203d64 85db45c 5203d64 1c40350 85db45c 5203d64 202c68f 5203d64 202c68f 5203d64 202c68f 5203d64 202c68f 5203d64 202c68f 5203d64 85db45c 5203d64 85db45c 5203d64 8635750 d358aa1 8635750 d358aa1 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 202c68f 42c34c8 202c68f 42c34c8 202c68f 5203d64 42c34c8 202c68f 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 202c68f 5203d64 42c34c8 5203d64 42c34c8 202c68f 42c34c8 202c68f 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 202c68f 42c34c8 202c68f 42c34c8 202c68f 42c34c8 202c68f 5203d64 42c34c8 202c68f 42c34c8 5203d64 42c34c8 5203d64 42c34c8 202c68f 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 202c68f 42c34c8 202c68f 42c34c8 5203d64 42c34c8 5203d64 42c34c8 5203d64 42c34c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 |
import numpy as np # for stats
import random # for randomly generating target and start words
import operator # for sorting letter frequency distribution
import time # for #dramaticeffect
import pandas as pd
import streamlit as st
english_alphabet = "abcdefghijklmnopqrstuvwxyz"
def get_letter_counts(word_list: list, letters: str = english_alphabet, sort: str = "descending", unique: bool = True):
"""
Given a passed str of letters and a list of words, produces a frequency distribution of all letters
Parameters:
------
`word_list`: list
list of words (str) from which word frequencies will be counted
`letters`: str
a string of letters to be counted. String must only be desired letters, with no spaces. Default is local variable containing all letters of the English alphabet
`sort`: str
if either "descending" or "ascending" are passed, returned list of tuples will be sorted accordingly, else returned dictionary will be unsorted
`unique`: bool
if True, only unique letters in a word are counted. That means that words with more unique letters are rated more highly than any words with duplicate letters
Returns:
------
`letters_counts_dict`: dict
dictionary of {letter : count} pairs for each letter in passed `letters` sequence
`sorted_counts_dicts`: list of tuples
list of tuples. Format is ("letter", frequency). Ordered according to `sort` values
"""
words_counts_dict = {}
if unique == False:
for word in word_list: # real dataset
word_dict = {}
for letter in word:
if letter in word_dict:
word_dict[letter] += 1
else:
word_dict[letter] = 1
words_counts_dict[word] = word_dict
else: # if unique == True
for word in word_list: # real dataset
word_dict = {}
word_letters = set(letter for letter in word)
for letter in word_letters:
if letter in word_dict:
word_dict[letter] += 1
else:
word_dict[letter] = 1
words_counts_dict[word] = word_dict
letters_counts_dict = {}
for letter in letters:
letters_counts_dict[letter] = 0
for word, count_dict in words_counts_dict.items():
# print (word, count_dict)
for letter, count in count_dict.items():
letters_counts_dict[letter] += count
if sort == "ascending":
sorted_counts_dict = (sorted(letters_counts_dict.items(), key = operator.itemgetter(1), reverse = False))
return sorted_counts_dicts
if sort == "descending":
sorted_counts_dict = sorted(letters_counts_dict.items(), key = operator.itemgetter(1), reverse = True)
return sorted_counts_dict
else:
return letters_counts_dict
### Best first guesses for a given Wordle list
def best_guess_words(word_list: list, show_letters: bool = False):
"""
Given a passed list of English words of a consistent length, calculates the most statistically optimal first guess words, alongside a rating for each word.
Rating = sum(frequency of each unique letter in that word) / sum (all unique letter frequencies in word_list) * 100, rounded to 2 decimals.
------
Parameters:
------
`word_list`: list
list of words (str) of consistent length
`show_letters`: bool
if True, also prints set of most optimal letters to guess
------
Returns:
------
`word_ratings`: list
list of tuples. Format is [(word, rating)], where rating is calculated according to above formula
`sorted_counts`: list of tuples
list of tuples. Format is ("letter", frequency). Sorted according to `sort` value; ["descending" or "ascending"] if passed
"""
english_alphabet = "abcdefghijklmnopqrstuvwxyz"
sorted_counts = get_letter_counts(english_alphabet, word_list, sort = "descending")
max_len_possible = len(word_list[0])
### Get words with the highest letter diversity
while max_len_possible:
best_letters = set()
best_words = []
for letter, freq in sorted_counts:
best_letters.add(letter)
if len(best_letters) == max_len_possible:
break
### Get all words that have one of each of the 5 top most frequent letters
for word in word_list:
word_set = set()
for letter in word:
word_set.add(letter)
if best_letters.issubset(word_set):
best_words.append(word)
if len(best_words) > 0:
break
else:
max_len_possible -= 1 # only try the top 4 letters, then 3, then 2, ...
if max_len_possible == 0:
break
all_letters_count = 0
for letter, freq in sorted_counts:
all_letters_count += freq
word_ratings = []
for word in best_words:
ratings_dict = {}
for letter in word:
for freq_letter, freq in sorted_counts:
if letter == freq_letter:
ratings_dict[letter] = freq
total_rating = 0
for letter, rating in ratings_dict.items():
total_rating += rating
word_ratings.append((word, round(total_rating / all_letters_count * 100, 2)))
word_ratings = sorted(word_ratings, key = operator.itemgetter(1), reverse = True)
if show_letters == True:
return word_ratings, sorted_counts
else:
return word_ratings
def count_vows_cons(word: str, y_vow = True):
"""
Given a passed word, calculate the number of non-unique vowels and consonants in the word (duplicates counted more than once).
------
Parameters:
------
`word`: str
a single passed word (str)
`y_vow`: bool
if True, "y" is considered a vowel. If False, "y" considered a consonant. Default is True
------
Returns:
------
`counts`: dict
dictionary, where format is {letter type : count}
"""
word = word.lower() # for consistency
if y_vow == True:
vows = "aeiouy"
cons = "bcdfghjklmnpqrstvwxz"
elif y_vow == False:
vows = "aeiou"
cons = "bcdfghjklmnpqrstvwxyz"
counts = {}
counts["vows"] = 0
counts["cons"] = 0
for letter in word:
if letter in vows:
counts["vows"] += 1
if letter in cons:
counts["cons"] += 1
return counts
def get_word_rating(words_to_rate: list, word_list: list, normalized: bool = True, ascending: bool = False):
"""
Given a word and a word list, calculates rating each word as a measure of its impact to the next possible guesses in Wordle, ordered according to `reverse` parameter.
------
Parameters:
------
`words_to_rate`: list
list of strings to be rated
`word_list`: list
list of all possible words (str) of consistent length, to which each word in `words_to_rate` will be compared
`normalized`: bool
if True, normalizes all ratings on a scale of 0-100, with 100 being the rating for the most optimal word, and 0 for the least optimal word
`ascending`: bool
if True, returns list ordered ascending. If False, returns list in descending order
------
Returns:
------
`word_ratings`: list
list of tuples. Format is [(word, rating)], where rating is calculated according to above formula
`sorted_counts`: list of tuples
list of tuples. Format is ("letter", frequency). Sorted according to `sort` value; ["descending" or "ascending"] if passed
"""
if ascending == True:
# sorted_counts = get_letter_counts(english_alphabet, word_list, sort = "ascending")
sorted_counts = get_letter_counts(word_list = word_list, letters = english_alphabet, sort = "ascending", unique = True)
else:
# sorted_counts = get_letter_counts(english_alphabet, word_list, sort = "descending")
sorted_counts = get_letter_counts(word_list = word_list, letters = english_alphabet, sort = "descending", unique = True)
all_letters_count = 0
for letter, freq in sorted_counts:
all_letters_count += freq
unnormalized_ratings = []
for word in words_to_rate:
word = word.lower()
ratings_dict = {}
for letter in word:
for freq_letter, freq in sorted_counts:
if letter == freq_letter:
ratings_dict[letter] = freq
total_rating = 0
for letter, rating in ratings_dict.items():
total_rating += rating
unnormalized_ratings.append((word, round(total_rating / all_letters_count * 100, 2)))
word_ratings = sorted(unnormalized_ratings, key = operator.itemgetter(1), reverse = True)
# print (word_ratings)
if normalized == True:
if len(word_ratings) > 1:
new_tests = []
for tup in word_ratings:
try:
normd = round(((tup[1] - word_ratings[-1][1]) / (word_ratings[0][1] - word_ratings[-1][1])) * 100, 2)
new_tests.append((tup[0], normd))
except:
ZeroDivisionError
new_tests.append((tup[0], 0.0))
return new_tests
else:
return [(word_ratings[0][0], float(100))]
elif normalized == False:
return word_ratings
### Gets most common words of all words of the dataset
def get_word_distribution(word_list: list, sort: str = "descending"):
"""
Given a passed str of words and a list of words, produces a frequency distribution of all words
------
Parameters:
------
`word_list`: list
list of words (str) from which word frequencies will be counted
`sort`: str
if either "descending" or "ascending" are passed, returned list of tuples will be sorted accoringly, else returned dictionary will be unsorted
------
Returns:
------
`words_counts_dict`: dict
dictionary of {word : count} pairs for each word in passed `word_list`
`sorted_counts_dicts`: list of tuples
list of tuples. Format is ("word", frequency). Ordered according to `sort` values
"""
words_counts_dict = {}
for word in word_list:
if word in words_counts_dict:
words_counts_dict[word] += 1
else:
words_counts_dict[word] = 1
if sort == "ascending":
sorted_counts_dict = (sorted(words_counts_dict.items(), key = operator.itemgetter(1), reverse = False))
return sorted_counts_dict
if sort == "descending":
sorted_counts_dict = sorted(words_counts_dict.items(), key = operator.itemgetter(1), reverse = True)
return sorted_counts_dict
############################################################################################################################################################
############################################################################################################################################################
############################################################################################################################################################
############################################################################################################################################################
## lines 305 - 835
def wordle_wizard(word_list: list, max_guesses: int = None,
guess: str = None, target: str = None,
random_guess: bool = False, random_target: bool = False,
verbose: bool = False, drama: float = None,
return_stats: bool = False, record: bool = False):
"""
Mimicking the popular web game, this function matches a current word to a target word automatically, in the most statistically optimal way possible.
Parameters:
------
`word_list`: list
list of valid words to be considered
`guess`: str
a string -- must be the same length as `target_word`
`target`: str
a string -- must be the same length as `opening_word`
`max_guesses`: int
the maximum number of attempts allowed to solve the Wordle
`random_guess`: bool
if True, randomly chooses a starting word from all words within `word_list`. If False, passed starting word must be used instead
`random_target`: bool
if True, randomly chooses a target word from all words within `word_list`. If False, passed target word must be used instead
`verbose`: bool
if True, prints progress and explanation of how function solves the puzzle. If False, prints only the guessed word at each guess.
`drama`: float or int
if int provided, each guess' output is delayed by that number of seconds, else each output is shown as quickly as possible. For ~dRaMaTiC eFfEcT~
`return_stats`: bool
if True, prints nothing and returns a dictionary of various statistics about the function's performance trying to solve the puzzle
`record`: bool
if True, creates a .txt file with the same information printed according to the indicated verbosity
Returns:
------
`stats_dict`: dict
dictionary containing various statistics about the function's performance trying to solve the puzzle
"""
guess = guess.lower()
target = target.lower()
sugg_words = []
for i in range(0, 20):
ran_int = random.randint(0, len(word_list) - 1)
word = word_list[ran_int]
sugg_words.append(word)
if guess not in word_list:
print ("Guess word not in passed word list.\nOnly words within the given word list are valid.")
print (f"Here are some examples of valid words from the passed word list.\n\t{sugg_words[:10]}")
return None
if target not in word_list:
print ("Target word not in passed word list.\nOnly words within the given word list are valid.")
print (f"Here are some examples of valid words from the passed word list.\n\t{sugg_words[-10:]}")
return None
if random_guess == True:
randomint_guess = random.randint(0, len(word_list) - 1)
guess = word_list[randomint_guess]
if random_target == True:
randomint_target = random.randint(0, len(word_list) - 1)
target = word_list[randomint_target]
stats_dict = {}
stats_dict['first_guess'] = guess
stats_dict['target_word'] = target
stats_dict['first_guess_vowels'] = float(count_vows_cons(guess, y_vow = True)['vows'])
stats_dict['first_guess_consonants'] = float(count_vows_cons(guess, y_vow = True)['cons'])
stats_dict['target_vowels'] = float(count_vows_cons(target, y_vow = True)['vows'])
stats_dict['target_consonants'] = float(count_vows_cons(target, y_vow = True)['cons'])
# get rating of the first guess word and target word in the entire word_list
for tup in get_word_rating(word_list, word_list, normalized = True):
if tup[0] == guess:
stats_dict['first_guess_rating'] = tup[1]
if tup[0] == target:
stats_dict['target_rating'] = tup[1]
guess_entropies = []
guess_entropies.append(stats_dict['first_guess_rating'])
# luck_guess_1 = round(1 - ((1 / len(word_list)) * guess_entropies[0] / 100), 2) * 100
english_alphabet = "abcdefghijklmnopqrstuvwxyz"
# word_list_sorted_counts = get_letter_counts(english_alphabet, word_list, sort = "descending")
word_list_sorted_counts = get_letter_counts(word_list = word_list, letters = english_alphabet, sort = "descending", unique = True)
wordlen = len(guess)
letter_positions = set(i for i in range(0, wordlen))
guess_set = set()
perfect_dict = {}
wrong_pos_dict = {}
wrong_pos_set = set()
dont_guess_again = set()
guessed_words = [] # running set of guessed words
guess_num = 0 # baseline for variable
dont_guess_words = set()
incorrect_positions = []
reduction_per_guess = []
if max_guesses == None: # if no value is passed, default is len(guess)
max_guesses = wordlen
else: # else it is the value passed
max_guesses = max_guesses
perfect_letts_per_guess = []
wrong_pos_per_guess = []
wrong_letts_per_guess = []
while guess: # while there is any guess -- there are conditions to break it at the bottom
guess_num += 1
guessed_words.append(guess)
if drama:
time.sleep(drama)
# guess_num += 1 # each time the guess is processed
if return_stats == False:
if guess_num == 1:
st.write("-----------------------------\n")
if guess == target:
stats_dict['target_guessed'] = True
if return_stats == False:
if guess_num == 1:
# st.write(f"Congratulations! The Wordle has been solved in {guess_num} guess, that's amazingly lucky!")
st.write(f"The starting word and target word are the same. Try entering two different words to see how the puzzle can be solved.")
# st.write(f"The target word was {target}")
perfect_letts_per_guess.append(5)
wrong_pos_per_guess.append(0)
wrong_letts_per_guess.append(0)
break
if return_stats == False:
st.write(f"**Guess {guess_num}: '{guess}'**")
guess_set = set()
wrong_pos_set = set()
#### Step 2 -- ALL PERFECT
for i in letter_positions: # number of letters in each word (current word and target word)
guess_set.add(guess[i])
if guess[i] not in perfect_dict:
perfect_dict[guess[i]] = set()
if guess[i] not in wrong_pos_dict:
wrong_pos_dict[guess[i]] = set()
### EVALUATE CURRENT GUESS
if guess[i] == target[i]: # letter == correct and position == correct
perfect_dict[guess[i]].add(i)
if (guess[i] != target[i] and guess[i] in target): # letter == correct and position != correct
wrong_pos_dict[guess[i]].add(i)
wrong_pos_set.add(guess[i])
if guess[i] not in target: # if letter is not relevant at all
dont_guess_again.add(guess[i])
#### Step 3 -- ALL PERFECT
next_letters = set()
for letter, positions in perfect_dict.items():
if len(positions) > 0:
next_letters.add(letter)
for letter, positions in wrong_pos_dict.items():
if len(positions) > 0:
next_letters.add(letter)
#### List of tuples of correct letter positions in new valid words. Eg: [('e', 2), ('a', 3)]
perfect_letters = []
for letter, positions in perfect_dict.items():
for pos in positions:
if len(positions) > 0:
perfect_letters.append((letter, pos))
#### all words that have correct letters in same spots
words_matching_correct_all = []
for word in word_list:
word_set = set()
for letter, pos in perfect_letters:
if pos < len(word):
if word[pos] == letter:
words_matching_correct_all.append(word)
#### excluding words with letters in known incorrect positions
for letter, positions in wrong_pos_dict.items():
for pos in positions:
if len(positions) > 0:
if (letter, pos) not in incorrect_positions:
incorrect_positions.append((letter, pos))
# sorting lists of tuples just to make them look nice in the printout
incorrect_positions = sorted(incorrect_positions, key = operator.itemgetter(1), reverse = False)
perfect_letters = sorted(perfect_letters, key = operator.itemgetter(1), reverse = False)
#### all words that have correct letters in incorrect spots -- so they can be excluded efficiently
# st.write(incorrect_positions)
for word in word_list:
word_set = set()
for letter, pos in incorrect_positions:
if pos < len(word):
if word[pos] == letter:
dont_guess_words.add(word)
for word in word_list:
word_set = set()
for letter, pos in incorrect_positions:
if pos < len(word):
if word[pos] == letter:
dont_guess_words.add(word)
for bad_letter in dont_guess_again:
for word in word_list:
if (bad_letter in word and word not in dont_guess_words):
dont_guess_words.add(word)
if return_stats == False:
if verbose == True:
st.write(f"Letters in correct positions:\n\t{perfect_letters}\n")
st.write(f"Letters in incorrect positions:\n\t{incorrect_positions}\n")
print (f"Letters to guess again:\n\t{sorted(list(next_letters), reverse = False)}\n")
st.write(f"Letters to not guess again:\n\t{sorted(list(dont_guess_again), reverse = False)}\n") # works
# Returns True
# st.write(A.issubset(B)) # "if everything in A is in B", returns Bool
perfect_letts_per_guess.append(len(perfect_letters))
wrong_pos_per_guess.append(len(incorrect_positions))
wrong_letts_per_guess.append(len(dont_guess_again))
potential_next_guesses = set()
middle_set = set()
if len(perfect_letters) == 0 and len(incorrect_positions) == 0: # if there are NEITHER perfect letters, NOR incorrect positions, ....
for word in word_list:
if word not in dont_guess_words:
if word not in guessed_words:
potential_next_guesses.add(word)
# st.write(f"GUESS {guess_num} : TEST 1-1")
if len(perfect_letters) == 0 and len(incorrect_positions) != 0: # if there are no perfect letters whatsoever, but there ARE incorrect positions ....
for word in word_list:
for incor_letter, incor_pos in incorrect_positions:
if incor_pos < len(word):
if word[incor_pos] != incor_letter:
if word not in dont_guess_words: # just in case
word_set = set()
for letter in word:
word_set.add(letter)
if next_letters.issubset(word_set):
if word not in guessed_words:
if len(dont_guess_again) > 0:
for bad_letter in dont_guess_again:
if bad_letter not in word:
# potential_next_guesses.append(word)
potential_next_guesses.add(word)
else:
potential_next_guesses.add(word)
# st.write(f"GUESS {guess_num} : TEST 2-1")
else:
for word in word_list:
if word not in dont_guess_words: # just in case
word_set = set()
for letter in word:
word_set.add(letter)
if next_letters.issubset(word_set):
if word not in guessed_words:
# print ("TEST 3-2")
if len(dont_guess_again) > 0:
for bad_letter in dont_guess_again:
if bad_letter not in word:
middle_set.add(word)
else:
middle_set.add(word)
for word in middle_set:
dummy_list = []
for good_lett, good_pos in perfect_letters:
if word[good_pos] == good_lett:
dummy_list.append(1)
if len(dummy_list) == len(perfect_letters):
potential_next_guesses.add(word)
for word in middle_set:
dummy_list = []
for bad_lett, bad_pos in incorrect_positions:
if bad_pos < len(word):
if word[bad_pos] == bad_lett:
dummy_list.append(1)
if len(dummy_list) > 0:
potential_next_guesses.remove(word)
# st.write(f"GUESS {guess_num} : TEST 3-1")
if return_stats == False:
if verbose == True:
if len(potential_next_guesses) > 1:
# st.write(f"At this point:")
st.write(f"\t{len(word_list) - len(potential_next_guesses)}, {round((len(word_list) - len(potential_next_guesses)) / len(word_list) * 100, 2)}% of total words have been eliminated, and")
st.write(f"\t{len(potential_next_guesses)}, {round(len(potential_next_guesses) / len(word_list) * 100, 2)}% of total words remain possible.\n")
else:
# st.write(f"At this point:")
st.write(f"\t{len(word_list) - len(potential_next_guesses)}, {round((len(word_list) - len(potential_next_guesses)) / len(word_list) * 100, 2)}% of total words have been eliminated, and")
st.write(f"\t{len(potential_next_guesses)}, {round(len(potential_next_guesses) / len(word_list) * 100, 2)}% of total words remain possible.\n")
reduction_per_guess.append(len(potential_next_guesses))
#### Guessing next word
if len(potential_next_guesses) == 1:
if return_stats == False:
if verbose == True:
st.write(f"All potential next guesses:\n\t{get_word_rating(words_to_rate = list(potential_next_guesses), word_list = word_list)}\n")
st.write(f"Words guessed so far:\n\t{guessed_words}.\n")
st.write(f"The only remaining possible word is:\n\t'{list(potential_next_guesses)[0]}'\n")
guess = list(potential_next_guesses)[0]
guess_entropies.append(get_word_rating([guess], word_list, normalized = False, ascending = False)[0][1])
else:
best_next_guesses = list(potential_next_guesses)
# print (best_next_guesses)
word_ratings = get_word_rating(best_next_guesses, word_list, normalized = False, ascending = False) # "internal" ratings
# Get max rating of all words
max_rating = -np.inf
for word, rating in word_ratings:
if rating > max_rating:
max_rating = rating
# add best rated words (all equally best rating in next guess list) to set
best_of_the_best_1 = []
for word, rating in word_ratings:
if rating == max_rating:
best_of_the_best_1.append(word)
# only using top ten most frequent prefixes suffixes to bias. After that it the impact is especially negligible
test_starts = get_gram_freq(word_list = word_list, letters_length = 1, position = "start", search = None)[:10]
test_ends = get_gram_freq(word_list = word_list, letters_length = 1, position = "end", search = None)[:10]
# list of the best words that also have the most frequent starting and ending letters (suffixes and prefixes didn't have an impact)
best_of_the_best_2 = []
for start_gram, start_count in test_starts:
for end_gram, end_count in test_ends:
for word in best_of_the_best_1:
if word[:1] == start_gram and word[-1:] == end_gram:
best_of_the_best_2.append(word)
if len(best_of_the_best_2) > 0:
guess = best_of_the_best_2[0]
else:
guess = best_of_the_best_1[0] # they're all equally the best of the best possible guesses so just pick the first
# guess_entropies.append(get_word_rating([guess], word_list, normalized = False, ascending = False)[0][1])
if return_stats == False:
if verbose == True:
if len(word_ratings) <= 40:
st.write(f"All potential next guesses:\n\t{word_ratings}\n")
st.write(f"Words guessed so far:\n\t{guessed_words}.\n")
else:
st.write(f"The top 40 potential next guesses are:\n\t{word_ratings[:40]}\n")
st.write(f"Words guessed so far:\n\t{guessed_words}.\n")
guess_entropies.append(get_word_rating([guess], word_list, normalized = False, ascending = False)[0][1])
#### Guess has now been made -- what to do next
if guess_num == max_guesses: # if at max guesses allowed
guessed_words.append(guess)
stats_dict['target_guessed'] = False
if return_stats == False:
if verbose == True:
st.write("-----------------------------\n")
st.write(f"Unfortunately, the Wordle could not be solved in {max_guesses} guesses.\n")
st.write(f"The target word was '{target}'.\n")
st.write("-----------------------------\n")
else:
st.write(f"\nUnfortunately, Wordle Wizard couldn't solve the puzzle in {max_guesses} guesses. Could you?")
st.write(f"The target word was '{target}'.\n")
break
else: # if not at max guesses yet allowed
# stats_dict['target_guessed'] = False
if return_stats == False:
if verbose == True:
st.write(f"Next guess:\n\t'{guess}'")
st.write("\n-----------------------------\n")
if guess == target:
guess_num += 1
guessed_words.append(guess)
stats_dict['target_guessed'] = True
if return_stats == False:
st.write(f"**Guess {guess_num}: '{guess}'**\n")
st.write(f"Wordle Wizard has solved the puzzle in {guess_num} guesses!")
if max_guesses - guess_num == 1:
st.write(f"There was only {max_guesses - guess_num} guess remaining.")
else:
st.write(f"There were still {max_guesses - guess_num} guesses remaining.")
if return_stats == False:
# stats_dict['target_guessed'] = True
st.write(f"\nThe target word was **'{target}'**.")
st.write("\n-----------------------------")
break
#### STATS STUFF
mid_guesses_vows = 0
mid_guesses_cons = 0
avg_perf_letters = 0
avg_wrong_pos_letters = 0
avg_wrong_letters = 0
for i, word in enumerate(guessed_words):
mid_guesses_vows += count_vows_cons(word, y_vow = True)['vows']
mid_guesses_cons += count_vows_cons(word, y_vow = True)['cons']
for i in range(0, len(guessed_words) - 1):
avg_perf_letters += perfect_letts_per_guess[i]
avg_wrong_pos_letters += wrong_pos_per_guess[i]
avg_wrong_letters += wrong_letts_per_guess[i]
stats_dict['mid_guesses_avg_vows'] = float(round(mid_guesses_vows / len(guessed_words), 2))
stats_dict['mid_guesses_avg_cons'] = float(round(mid_guesses_cons / len(guessed_words), 2))
stats_dict['avg_perf_letters'] = float(round(np.mean(avg_perf_letters), 2))
stats_dict['avg_wrong_pos_letters'] = float(round(np.mean(avg_wrong_pos_letters), 2))
stats_dict['avg_wrong_letters'] = float(round(np.mean(avg_wrong_letters), 2))
# average number of words remaining after each guess -- the higher this is, the luckier the person got (the lower, the more guesses it took)
stats_dict['avg_remaining'] = float(round(np.mean(reduction_per_guess), 2))
# avg rating of each guessed word relative to all other words possible at that moment -- this should consistently be 100 for the algorithm, but will be different for user
if len(guess_entropies) > 1: # in case of guessing it correctly on the first try
sum_entropies = 0
for rating in guess_entropies:
sum_entropies += rating
average_rating = float(round(sum_entropies / len(guess_entropies), 2))
stats_dict['avg_intermediate_guess_rating'] = average_rating
else:
stats_dict['avg_intermediate_guess_rating'] = float(100)
expected_guesses = 3.85
# guess_num = 3
# average_rating = 95
luck = round(1 - ((((guess_num / expected_guesses) * (stats_dict['avg_intermediate_guess_rating'] / 100)) / max_guesses) * 5), 2)
stats_dict['luck'] = luck
if record == True:
if verbose == True:
with open(f"solutions/{guessed_words[0]}_{target}_wizard_detailed.txt", "w") as fout:
fout.write(line + "\n") # write each line of list of printed text to .txt file
else:
with open(f"solutions/{guessed_words[0]}_{target}_wizard_summary.txt", "w") as fout:
fout.write(line + "\n") # write
# if guess_num <= len(guess):
if guess_num <= 6:
stats_dict['valid_success'] = True
else:
stats_dict['valid_success'] = False
stats_dict['num_guesses'] = float(guess_num)
# if return_stats == True:
# return stats_dict
############################################################################################################################################################
############################################################################################################################################################
############################################################################################################################################################
############################################################################################################################################################
def get_gram_freq(word_list: list, letters_length: int = 2, position: bool = "start", search: any = None):
"""
Given a word list, a selected number of letter, a selected word position to start from ("start" or "end"),
and an optional gram to search within the list, this function will get a frequency distribution of all n-grams
from the passed word list and returned a frequency distribution in descending order.
Parameters:
------
`word_list`: list
list of words of the same
`letters_length`: int
number of letters in succession. Size/length of "gram". Must be between 1 and length of words in word list
`position`: bool
Whether to start the gram from the start of the word (like a prefix) or the end of the word (like a suffix)
`search`: str
If != None, string of characters to search for within the generated list. If string not found in list, function will print an error message.
Returns:
------
`tup`: tuple
If search != None, will return a tuple with the passed search criteria, and its count
`sorted_gram_list`: list
List of tuples in the form of (gram, count) for each combination of the gram size in the pass word_list
"""
gram_freq_dist = {}
for word in word_list:
if position == "start":
gram = word[:letters_length] # first 2 letters
if position == "end":
gram = word[-(letters_length):] # first 2 letters
if gram not in gram_freq_dist:
gram_freq_dist[gram] = 1
else:
gram_freq_dist[gram] += 1
sorted_gram_dist = sorted(gram_freq_dist.items(), key = operator.itemgetter(1), reverse = True)
if search:
nos = []
for tup in sorted_gram_dist:
if tup[0] == search:
return tup
else:
nos.append("not here")
if len(nos) == len(sorted_gram_dist):
print ("Search criteria not found in list. Please enter a gram from within the list.")
else:
return sorted_gram_dist
# def compare_wordle(word_list: list, max_guesses: int = None, guess_list: list = None,
# player: str = None, target: str = None,
# verbose: bool = False,
# return_stats: bool = False, record: bool = False):
# """
# Mimicking the popular web game, this function matches a current word to a target word automatically, in the most statistically optimal way possible.
# ------
# Parameters:
# ------
# `word_list`: list
# list of valid words to be considered
# `target`: str
# a string -- must be the same length as `opening_word`
# `max_guesses`: int
# the maximum number of attempts allowed to solve the Wordle
# `verbose`: bool
# if True, prints progress and explanation of how function solves the puzzle. If False, prints only the guessed word at each guess.
# `return_stats`: bool
# if True, prints nothing and returns a dictionary of various statistics about the function's performance trying to solve the puzzle
# `record`: bool
# if True, creates a .txt file with the same information printed according to the indicated verbosity
# ------
# Returns:
# ------
# `stats_dict`: dict
# dictionary containing various statistics about the function's performance trying to solve the puzzle
# """
# stats_dict = {}
# # official_words list seems to not be 100% the same as the real game, so this adds new words to it
# for word in guess_list:
# if word not in word_list:
# word_list.append(word)
# guess = guess_list[0]
# first_guess = guess_list[0]
# stats_dict['first_guess'] = guess
# stats_dict['target_word'] = target
# stats_dict['first_guess_vowels'] = float(count_vows_cons(guess, y_vow = True)['vows'])
# stats_dict['first_guess_consonants'] = float(count_vows_cons(guess, y_vow = True)['cons'])
# stats_dict['target_vowels'] = float(count_vows_cons(target, y_vow = True)['vows'])
# stats_dict['target_consonants'] = float(count_vows_cons(target, y_vow = True)['cons'])
# # get rating of the first guess word and target word in the entire word_list
# for tup in get_word_rating(word_list, word_list, normalized = True):
# if tup[0] == guess:
# stats_dict['first_guess_rating'] = tup[1]
# if tup[0] == target:
# stats_dict['target_rating'] = tup[1]
# guess_entropies = []
# guess_entropies.append(stats_dict['first_guess_rating'])
# english_alphabet = "abcdefghijklmnopqrstuvwxyz"
# word_list_sorted_counts = get_letter_counts(english_alphabet, word_list, sort = "descending")
# wordlen = len(guess)
# letter_positions = set(i for i in range(0, wordlen))
# guess_set = set()
# perfect_dict = {}
# wrong_pos_dict = {}
# wrong_pos_set = set()
# dont_guess_again = set()
# guessed_words = [] # running set of guessed words
# guess_num = 0 # baseline for variable
# dont_guess_words = set()
# incorrect_positions = []
# reduction_per_guess = []
# if max_guesses == None: # if no value is passed, default is len(guess)
# max_guesses = wordlen
# else: # else it is the value passed
# max_guesses = max_guesses
# perfect_letts_per_guess = []
# wrong_pos_per_guess = []
# wrong_letts_per_guess = []
# record_list = []
# while guess: # while there is any guess -- there are conditions to break it at the bottom
# guess_num += 1
# guessed_words.append(guess)
# # if drama:
# # time.sleep(drama)
# # guess_num += 1 # each time the guess is processed
# if return_stats == False:
# if guess_num == 1:
# print("-----------------------------\n")
# record_list.append("-----------------------------\n")
# if return_stats == False:
# print(f"Guess {guess_num}: '{guess}'")
# record_list.append(f"Guess {guess_num}: '{guess}'")
# if guess == target:
# stats_dict['target_guessed'] = True
# if return_stats == False:
# if guess_num == 1:
# print(f"Congratulations! The Wordle has been solved in {guess_num} guess, that's amazingly lucky!")
# print(f"The target word was {target}")
# record_list.append(f"Congratulations! The Wordle has been solved in {guess_num} guess, that's amazingly lucky!")
# record_list.append(f"The target word was '{target}'.")
# perfect_letts_per_guess.append(5)
# wrong_pos_per_guess.append(0)
# wrong_letts_per_guess.append(0)
# break
# guess_set = set()
# wrong_pos_set = set()
# #### Step 2 -- ALL PERFECT
# for i in letter_positions: # number of letters in each word (current word and target word)
# guess_set.add(guess[i])
# if guess[i] not in perfect_dict:
# perfect_dict[guess[i]] = set()
# if guess[i] not in wrong_pos_dict:
# wrong_pos_dict[guess[i]] = set()
# ### EVALUATE CURRENT GUESS
# if guess[i] == target[i]: # letter == correct and position == correct
# perfect_dict[guess[i]].add(i)
# if (guess[i] != target[i] and guess[i] in target): # letter == correct and position != correct
# wrong_pos_dict[guess[i]].add(i)
# wrong_pos_set.add(guess[i])
# if guess[i] not in target: # if letter is not relevant at all
# dont_guess_again.add(guess[i])
# #### Step 3 -- ALL PERFECT
# next_letters = set()
# for letter, positions in perfect_dict.items():
# if len(positions) > 0:
# next_letters.add(letter)
# for letter, positions in wrong_pos_dict.items():
# if len(positions) > 0:
# next_letters.add(letter)
# #### List of tuples of correct letter positions in new valid words. Eg: [('e', 2), ('a', 3)]
# perfect_letters = []
# for letter, positions in perfect_dict.items():
# for pos in positions:
# if len(positions) > 0:
# perfect_letters.append((letter, pos))
# #### all words that have correct letters in same spots
# words_matching_correct_all = []
# for word in word_list:
# word_set = set()
# for letter, pos in perfect_letters:
# if word[pos] == letter:
# words_matching_correct_all.append(word)
# #### excluding words with letters in known incorrect positions
# for letter, positions in wrong_pos_dict.items():
# for pos in positions:
# if len(positions) > 0:
# if (letter, pos) not in incorrect_positions:
# incorrect_positions.append((letter, pos))
# # sorting lists of tuples just to make them look nice in the printout
# incorrect_positions = sorted(incorrect_positions, key = operator.itemgetter(1), reverse = False)
# perfect_letters = sorted(perfect_letters, key = operator.itemgetter(1), reverse = False)
# #### all words that have correct letters in incorrect spots -- so they can be excluded efficiently
# # print(incorrect_positions)
# for word in word_list:
# word_set = set()
# for letter, pos in incorrect_positions:
# if word[pos] == letter:
# dont_guess_words.add(word)
# for word in word_list:
# word_set = set()
# for letter, pos in incorrect_positions:
# if word[pos] == letter:
# dont_guess_words.add(word)
# for bad_letter in dont_guess_again:
# for word in word_list:
# if (bad_letter in word and word not in dont_guess_words):
# dont_guess_words.add(word)
# if return_stats == False:
# if verbose == True:
# print(f"Letters in correct positions:\n\t{perfect_letters}\n")
# print(f"Letters in incorrect positions:\n\t{incorrect_positions}\n")
# print (f"Letters to guess again:\n\t{sorted(list(next_letters), reverse = False)}\n")
# print(f"Letters to not guess again:\n\t{sorted(list(dont_guess_again), reverse = False)}\n") # works
# record_list.append(f"Letters in correct positions:\n\t{perfect_letters}\n")
# record_list.append(f"Letters in incorrect positions:\n\t{incorrect_positions}\n")
# record_list.append(f"Letters to guess again:\n\t{sorted(list(next_letters), reverse = False)}\n")
# record_list.append(f"Letters to not guess again:\n\t{sorted(list(dont_guess_again), reverse = False)}\n") # works
# # Returns True
# # print(A.issubset(B)) # "if everything in A is in B", returns Bool
# perfect_letts_per_guess.append(len(perfect_letters))
# wrong_pos_per_guess.append(len(incorrect_positions))
# wrong_letts_per_guess.append(len(dont_guess_again))
# potential_next_guesses = set()
# middle_set = set()
# if len(perfect_letters) == 0 and len(incorrect_positions) == 0: # if there are NEITHER perfect letters, NOR incorrect positions, ....
# for word in word_list:
# if word not in dont_guess_words:
# if word not in guessed_words:
# potential_next_guesses.add(word)
# # print(f"GUESS {guess_num} : TEST 1-1")
# if len(perfect_letters) == 0 and len(incorrect_positions) != 0: # if there are no perfect letters whatsoever, but there ARE incorrect positions ....
# for word in word_list:
# for incor_letter, incor_pos in incorrect_positions:
# if word[incor_pos] != incor_letter:
# if word not in dont_guess_words: # just in case
# word_set = set()
# for letter in word:
# word_set.add(letter)
# if next_letters.issubset(word_set):
# if word not in guessed_words:
# if len(dont_guess_again) > 0:
# for bad_letter in dont_guess_again:
# if bad_letter not in word:
# # potential_next_guesses.append(word)
# potential_next_guesses.add(word)
# else:
# potential_next_guesses.add(word)
# # print(f"GUESS {guess_num} : TEST 2-1")
# else:
# for word in word_list:
# if word not in dont_guess_words: # just in case
# word_set = set()
# for letter in word:
# word_set.add(letter)
# if next_letters.issubset(word_set):
# if word not in guessed_words:
# # print ("TEST 3-2")
# if len(dont_guess_again) > 0:
# for bad_letter in dont_guess_again:
# if bad_letter not in word:
# middle_set.add(word)
# else:
# middle_set.add(word)
# for word in middle_set:
# dummy_list = []
# for good_lett, good_pos in perfect_letters:
# if word[good_pos] == good_lett:
# dummy_list.append(1)
# if len(dummy_list) == len(perfect_letters):
# potential_next_guesses.add(word)
# for word in middle_set:
# dummy_list = []
# for bad_lett, bad_pos in incorrect_positions:
# if word[bad_pos] == bad_lett:
# dummy_list.append(1)
# if len(dummy_list) > 0:
# potential_next_guesses.remove(word)
# # print(f"GUESS {guess_num} : TEST 3-1")
# if return_stats == False:
# if verbose == True:
# print(f"At this point:")
# print(f"\t{len(word_list) - len(potential_next_guesses)}, {round((len(word_list) - len(potential_next_guesses)) / len(word_list) * 100, 2)}% of total words have been eliminated, and")
# print(f"\t{len(potential_next_guesses)}, {round(len(potential_next_guesses) / len(word_list) * 100, 2)}% of total words remain possible.\n")
# # record_list.append(f"At this point:")
# record_list.append(f"\t{len(word_list) - len(potential_next_guesses)}, {round((len(word_list) - len(potential_next_guesses)) / len(word_list) * 100, 2)}% of total words have been eliminated, and")
# record_list.append(f"\t{len(potential_next_guesses)}, {round(len(potential_next_guesses) / len(word_list) * 100, 2)}% of total words remain possible.\n")
# reduction_per_guess.append(len(potential_next_guesses))
# #### Guessing next word
# if len(potential_next_guesses) == 1:
# if return_stats == False:
# if verbose == True:
# print(f"The only remaining possible word is:\n\t'{list(potential_next_guesses)[0]}'\n")
# record_list.append(f"The only remaining possible word is:\n\t'{list(potential_next_guesses)[0]}'\n")
# # guess = list(potential_next_guesses)[0]
# del guess_list[0]
# # print (guess_list)
# guess = guess_list[0]
# guess_entropies.append(get_word_rating([guess], word_list, normalized = True, ascending = False)[0][1])
# else:
# best_next_guesses = list(potential_next_guesses)
# word_ratings = get_word_rating(best_next_guesses, word_list, normalized = True, ascending = False) # "internal" ratings
# del guess_list[0]
# # print (guess_list)
# guess = guess_list[0]
# guess_entropies.append(get_word_rating([guess], word_list, normalized = True, ascending = False)[0][1])
# if return_stats == False:
# if verbose == True:
# if len(word_ratings) <= 40:
# print(f"All potential next guesses:\n\t{word_ratings}\n")
# print(f"Words guessed so far:\n\t{guessed_words}.\n")
# record_list.append(f"Potential next guesses:\n\t{word_ratings}\n")
# record_list.append(f"Words guessed so far:\n\t{guessed_words}.\n")
# else:
# print(f"The top 40 potential next guesses are:\n\t{word_ratings[:40]}\n")
# print(f"Words guessed so far:\n\t{guessed_words}.\n")
# record_list.append(f"The top 40 potential next guesses are::\n\t{word_ratings[:40]}\n")
# record_list.append(f"Words guessed so far:\n\t{guessed_words}.\n")
# #### Guess has now been made -- what to do next
# if guess_num == max_guesses: # if at max guesses allowed
# guessed_words.append(guess)
# stats_dict['target_guessed'] = False
# if return_stats == False:
# if verbose == True:
# # print("-----------------------------\n")
# print(f"Unfortunately, the Wordle could not be solved in {max_guesses} guesses.\n")
# print(f"The target word was '{target}'. Better luck next time!\n")
# print("-----------------------------\n")
# record_list.append(f"Unfortunately, the Wordle could not be solved in {max_guesses} guesses.\n")
# record_list.append(f"The target word was '{target}'. Better luck next time!\n")
# record_list.append("-----------------------------\n")
# else:
# print(f"\nUnfortunately, the Wordle could not be solved in {max_guesses} guesses.")
# print(f"The target word was '{target}'. Better luck next time!\n")
# record_list.append(f"\nUnfortunately, the Wordle could not be solved in {max_guesses} guesses.")
# record_list.append(f"The target word was '{target}'. Better luck next time!\n")
# break
# else: # if not at max guesses yet allowed
# # stats_dict['target_guessed'] = False
# if return_stats == False:
# if verbose == True:
# print(f"Next guess:\n\t'{guess}'")
# print("\n-----------------------------")
# record_list.append(f"Next guess: '{guess}'")
# record_list.append("-----------------------------\n")
# if guess == target:
# guess_num += 1
# guessed_words.append(guess)
# stats_dict['target_guessed'] = True
# if return_stats == False:
# print(f"Guess {guess_num}: '{guess}'\n")
# print(f"Congratulations! The Wordle has been solved in {guess_num} guesses!")
# record_list.append(f"Guess {guess_num}: '{guess}'\n")
# record_list.append(f"Congratulations! The Wordle has been solved in {guess_num} guesses!")
# if max_guesses - guess_num == 0:
# print(f"Lucky! It was the last guess.")
# record_list.append(f"Lucky! It was the last guess.")
# else:
# print(f"There were still {max_guesses - guess_num} guesses remaining.")
# record_list.append(f"There were still {max_guesses - guess_num} guesses remaining.")
# if return_stats == False:
# # stats_dict['target_guessed'] = True
# print(f"\nThe target word was '{target}'.")
# print("\n-----------------------------")
# record_list.append(f"The target word was '{target}'.")
# record_list.append("-----------------------------")
# break
# #### STATS STUFF
# mid_guesses_vows = 0
# mid_guesses_cons = 0
# avg_perf_letters = 0
# avg_wrong_pos_letters = 0
# avg_wrong_letters = 0
# for i, word in enumerate(guessed_words):
# mid_guesses_vows += count_vows_cons(word, y_vow = True)['vows']
# mid_guesses_cons += count_vows_cons(word, y_vow = True)['cons']
# for i in range(0, len(guessed_words) - 1):
# avg_perf_letters += perfect_letts_per_guess[i]
# avg_wrong_pos_letters += wrong_pos_per_guess[i]
# avg_wrong_letters += wrong_letts_per_guess[i]
# stats_dict['mid_guesses_avg_vows'] = float(round(mid_guesses_vows / len(guessed_words), 2))
# stats_dict['mid_guesses_avg_cons'] = float(round(mid_guesses_cons / len(guessed_words), 2))
# stats_dict['avg_perf_letters'] = float(round(np.mean(avg_perf_letters), 2))
# stats_dict['avg_wrong_pos_letters'] = float(round(np.mean(avg_wrong_pos_letters), 2))
# stats_dict['avg_wrong_letters'] = float(round(np.mean(avg_wrong_letters), 2))
# # average number of words remaining after each guess -- the higher this is, the luckier the person got (the lower, the more guesses it took)
# stats_dict['avg_remaining'] = float(round(np.mean(reduction_per_guess), 2))
# # avg rating of each guessed word relative to all other words possible at that moment -- this should consistently be 100 for the algorithm, but will be different for user
# if len(guess_entropies) > 1: # in case of guessing it correctly on the first try
# sum_entropies = 0
# for rating in guess_entropies:
# sum_entropies += rating
# average_rating = float(round(sum_entropies / len(guess_entropies), 2))
# stats_dict['avg_intermediate_guess_rating'] = average_rating
# else:
# stats_dict['avg_intermediate_guess_rating'] = float(100)
# # stats_dict['bias'] = bias
# if record == True:
# if verbose == True:
# with open(f"solutions/{guessed_words[0]}_{target}_wizard_detailed.txt", "w") as fout:
# for line in record_list:
# fout.write(line + "\n") # write each line of list of printed text to .txt file
# else:
# with open(f"solutions/{guessed_words[0]}_{target}_wizard_summary.txt", "w") as fout:
# for line in record_list:
# fout.write(line + "\n") # write
# # if guess_num <= len(guess):
# if guess_num <= 6:
# stats_dict['valid_success'] = True
# else:
# stats_dict['valid_success'] = False
# stats_dict['player'] = player
# stats_dict['num_guesses'] = float(guess_num)
# wizard_dict = wordle_wizard(word_list = word_list, max_guesses = max_guesses,
# guess = first_guess, target = target, bias = 'rating',
# random_guess = False, random_target = False,
# verbose = False, drama = 0, return_stats = return_stats, record = False)
# wizard_dict['player'] = "wizard"
# del wizard_dict['bias'] # leftover from the wordle_wizard() output stats_dict, but isn't relevant anymore
# wizard_dict['luck'] = 0
# wizard_dict['expected_guesses'] = wizard_dict['num_guesses']
# stats_dict['expected_guesses'] = wizard_dict['num_guesses']
# expected_guesses = wizard_dict['num_guesses']
# # stats_dict['luck'] = round((1 - (guess_num / expected_guesses)) * (stats_dict['avg_intermediate_guess_rating'] / 100), 2)
# stats_dict['luck'] = round((1 - ((guess_num / expected_guesses)) * (stats_dict['avg_intermediate_guess_rating'] / 100)), 2)
# stats_master = {}
# for metric, result in stats_dict.items():
# if metric in stats_master:
# stats_master[metric].append(result)
# else:
# stats_master[metric] = []
# stats_master[metric].append(result)
# for metric, result in wizard_dict.items():
# stats_master[metric].append(result)
# if return_stats == True:
# return stats_master
# def convert_row(df, row):
# """
# Converts row of passed pandas dataFrame object into usable inputs for `compare_wordle()` function
# ------
# Parameters:
# ------
# `df`: pandas df object
# pandas dataFrame object
# `row`: int
# row number of pd df object
# ------
# Returns:
# ------
# 3-tuple containing:
# `guess_list`: list
# list of words guessed in this playthrough of passed iteration of the puzzle
# `target`: str
# target word of passed iteration of the puzzle
# `player`: str
# name of player of passed iteration of the puzzle
# """
# df.fillna("none", inplace = True)
# df.loc[row, :].str.lower()
# list_1 = df.loc[row, :].tolist()
# # print(list_1)
# player = list_1[0]
# del list_1[0]
# target = list_1[0]
# del list_1[0]
# to_delete = []
# for i, word in enumerate(list_1):
# if word == "none":
# to_delete.append(i)
# to_delete = sorted(to_delete, reverse = True) # this has to be done or else index will be eventually be out of range
# for pos in to_delete:
# del list_1[pos]
# guess_list = list_1
# lower_player = player.lower()
# lower_target = target.lower()
# lower_guess_list = [word.lower() for word in guess_list]
# return (lower_player, lower_target, lower_guess_list)
# def create_compared_df(player_df, to_csv: bool = False, show_shapes: bool = False):
# """
# Creates master df of player wordle scores compared to how wordle_wizard would perform on the same puzzles
# Parameters:
# -----
# `player_df`: Pandas dataFrame object
# df of player scores of wordle puzzles
# `to_csv`: bool
# If True, writes returned df to csv
# `show_shapes`: bool
# If True, prints shape of new df before and after deleting duplicate rows (created by wordle_wizard running the same puzzles multiple times)
# Returns:
# -----
# `df_master`: Pandas dataFrame object
# df of player scores and wordle_wizard scores of wordle puzzles
# """
# stats_master = {}
# excepts = []
# for row in player_df.index:
# player = convert_row(player_df, row)[0]
# target_word = convert_row(player_df, row)[1]
# guess_list = convert_row(player_df, row)[2]
# try:
# complete = compare_wordle(word_list = official_words, max_guesses = 6,
# guess_list = guess_list, player = player, target = target_word,
# verbose = True, return_stats = True, record = False)
# for metric, results in complete.items():
# if metric in stats_master:
# for result in results:
# stats_master[metric].append(result)
# else:
# stats_master[metric] = []
# for result in results:
# stats_master[metric].append(result)
# except:
# AttributeError
# excepts.append(guess_list)
# df_master = pd.DataFrame(stats_master)
# # print(df_master.columns.tolist())
# # Re-organizing columns to a more logical order (for viewing)
# df_master = df_master[['first_guess', 'target_word', 'player', 'num_guesses', 'expected_guesses', 'luck', 'first_guess_vowels', 'first_guess_consonants',
# 'target_vowels', 'target_consonants', 'first_guess_rating', 'target_rating',
# 'target_guessed', 'mid_guesses_avg_vows', 'mid_guesses_avg_cons', 'avg_perf_letters',
# 'avg_wrong_pos_letters', 'avg_wrong_letters', 'avg_remaining', 'avg_intermediate_guess_rating',
# 'valid_success']]
# # print(excepts)
# if show_shapes == True:
# print(df_master.shape) # check shape before deleting dups
# # Delete duplicate rows (some created by process)
# df_master.drop_duplicates(inplace = True)
# if to_csv == True:
# df_master.to_csv('compared_data/players_compared.csv') # write new data to csv
# if show_shapes == True:
# print(df_master.shape) # check shape after deleting dups
# return df_master |