Spaces:
Sleeping
Sleeping
KAI MAURIN-JONES
commited on
Commit
•
d358aa1
1
Parent(s):
29ca9e3
solving function updated
Browse files- __pycache__/wordle_functions.cpython-310.pyc +0 -0
- wordle_functions.py +107 -111
- wordle_testing.ipynb +1654 -0
__pycache__/wordle_functions.cpython-310.pyc
ADDED
Binary file (30 kB). View file
|
|
wordle_functions.py
CHANGED
@@ -301,14 +301,13 @@ def get_word_distribution(word_list: list, sort: str = "descending"):
|
|
301 |
############################################################################################################################################################
|
302 |
|
303 |
def wordle_wizard(word_list: list, max_guesses: int = None,
|
304 |
-
guess: str = None, target: str = None,
|
305 |
random_guess: bool = False, random_target: bool = False,
|
306 |
verbose: bool = False, drama: float = None,
|
307 |
return_stats: bool = False, record: bool = False, hf_mod: bool = True):
|
308 |
"""
|
309 |
Mimicking the popular web game, this function matches a current word to a target word automatically, in the most statistically optimal way possible.
|
310 |
|
311 |
-
------
|
312 |
Parameters:
|
313 |
------
|
314 |
`word_list`: list
|
@@ -317,15 +316,6 @@ def wordle_wizard(word_list: list, max_guesses: int = None,
|
|
317 |
a string -- must be the same length as `target_word`
|
318 |
`target`: str
|
319 |
a string -- must be the same length as `opening_word`
|
320 |
-
`bias`: str ['entropy', 'common', 'rare', None]
|
321 |
-
'entropy' biases next word guesses to be the ones with the highest impact on the range of next possible guesses. Entropy values associated with each word are normalized across the list.
|
322 |
-
|
323 |
-
'common' biases next word guesses to be words that are more commonly used
|
324 |
-
|
325 |
-
'rare' biases next word guesses to be words that are more rarely used
|
326 |
-
|
327 |
-
'no_bias' chooses a next guess at random of all available guesses
|
328 |
-
|
329 |
`max_guesses`: int
|
330 |
the maximum number of attempts allowed to solve the Wordle
|
331 |
`random_guess`: bool
|
@@ -341,13 +331,15 @@ def wordle_wizard(word_list: list, max_guesses: int = None,
|
|
341 |
`record`: bool
|
342 |
if True, creates a .txt file with the same information printed according to the indicated verbosity
|
343 |
|
344 |
-
------
|
345 |
Returns:
|
346 |
------
|
347 |
`stats_dict`: dict
|
348 |
dictionary containing various statistics about the function's performance trying to solve the puzzle
|
349 |
"""
|
350 |
|
|
|
|
|
|
|
351 |
sugg_words = []
|
352 |
|
353 |
for i in range(0, 20):
|
@@ -658,100 +650,55 @@ def wordle_wizard(word_list: list, max_guesses: int = None,
|
|
658 |
|
659 |
else:
|
660 |
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
print(f"Potential next guesses:\n\t{best_next_guesses}\n")
|
711 |
-
print(f"Words guessed so far:\n\t{guessed_words}.\n")
|
712 |
-
record_list.append(f"Potential next guesses: {best_next_guesses}\n")
|
713 |
-
record_list.append(f"Words guessed so far: {guessed_words}.\n")
|
714 |
-
|
715 |
-
if bias == ("common" or "rare"):
|
716 |
-
found_words = []
|
717 |
-
for word in word_list:
|
718 |
-
if word in nltk_counts.keys():
|
719 |
-
found_words.append(word)
|
720 |
-
|
721 |
-
found_words_sorted = sorted(found_words, key = operator.itemgetter(1), reverse = True) # sorted descending
|
722 |
-
|
723 |
-
rated_words = []
|
724 |
-
for word in potential_next_guesses:
|
725 |
-
for tup in found_words_sorted:
|
726 |
-
if tup[0] == word:
|
727 |
-
rated_words.append(tup)
|
728 |
-
|
729 |
-
rated_words = sorted(rated_words, key = operator.itemgetter(1), reverse = True) # sorted descending
|
730 |
-
|
731 |
-
if bias == "common":
|
732 |
-
guess = rated_words[0][0] # word in first position // most frequent word
|
733 |
-
|
734 |
-
if return_stats == False:
|
735 |
-
if verbose == True:
|
736 |
-
if len(potential_next_guesses) <= 40:
|
737 |
-
print(f"Potential next guesses:\n\t{rated_words}\n")
|
738 |
-
print(f"Words guessed so far:\n\t{guessed_words}.\n")
|
739 |
-
record_list.append(f"Potential next guesses: {potential_next_guesses}\n")
|
740 |
-
record_list.append(f"Words guessed so far: {guessed_words}.\n")
|
741 |
-
|
742 |
-
if bias == "rare":
|
743 |
-
guess = rated_words[-1][0] # word in last position // least frequent word
|
744 |
-
|
745 |
-
if return_stats == False:
|
746 |
-
if verbose == True:
|
747 |
-
if len(potential_next_guesses) <= 40:
|
748 |
-
print(f"Potential next guesses:\n\t{rated_words}\n")
|
749 |
-
print(f"Words guessed so far:\n\t{guessed_words}.\n")
|
750 |
-
record_list.append(f"Potential next guesses: {potential_next_guesses}\n")
|
751 |
-
record_list.append(f"Words guessed so far: {guessed_words}.\n")
|
752 |
-
|
753 |
-
# guess = list(best_next_guesses)[0]
|
754 |
-
guess_entropies.append(get_word_entropy([guess], word_list, normalized = True, ascending = False)[0][1])
|
755 |
|
756 |
#### Guess has now been made -- what to do next
|
757 |
if guess_num == max_guesses: # if at max guesses allowed
|
@@ -850,9 +797,6 @@ def wordle_wizard(word_list: list, max_guesses: int = None,
|
|
850 |
# average_entropy = 95
|
851 |
luck = round(1 - ((((guess_num / expected_guesses) * (stats_dict['avg_intermediate_guess_entropy'] / 100)) / max_guesses) * 5), 2)
|
852 |
stats_dict['luck'] = luck
|
853 |
-
|
854 |
-
stats_dict['bias'] = bias
|
855 |
-
|
856 |
|
857 |
if record == True:
|
858 |
if verbose == True:
|
@@ -864,7 +808,6 @@ def wordle_wizard(word_list: list, max_guesses: int = None,
|
|
864 |
for line in record_list:
|
865 |
fout.write(line + "\n") # write
|
866 |
|
867 |
-
|
868 |
# if guess_num <= len(guess):
|
869 |
if guess_num <= 6:
|
870 |
stats_dict['valid_success'] = True
|
@@ -877,11 +820,64 @@ def wordle_wizard(word_list: list, max_guesses: int = None,
|
|
877 |
# return stats_dict
|
878 |
if hf_mod == True:
|
879 |
return record_list
|
880 |
-
|
881 |
############################################################################################################################################################
|
882 |
############################################################################################################################################################
|
883 |
############################################################################################################################################################
|
884 |
############################################################################################################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
885 |
|
886 |
def compare_wordle(word_list: list, max_guesses: int = None, guess_list: list = None,
|
887 |
player: str = None, target: str = None,
|
|
|
301 |
############################################################################################################################################################
|
302 |
|
303 |
def wordle_wizard(word_list: list, max_guesses: int = None,
|
304 |
+
guess: str = None, target: str = None,
|
305 |
random_guess: bool = False, random_target: bool = False,
|
306 |
verbose: bool = False, drama: float = None,
|
307 |
return_stats: bool = False, record: bool = False, hf_mod: bool = True):
|
308 |
"""
|
309 |
Mimicking the popular web game, this function matches a current word to a target word automatically, in the most statistically optimal way possible.
|
310 |
|
|
|
311 |
Parameters:
|
312 |
------
|
313 |
`word_list`: list
|
|
|
316 |
a string -- must be the same length as `target_word`
|
317 |
`target`: str
|
318 |
a string -- must be the same length as `opening_word`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
`max_guesses`: int
|
320 |
the maximum number of attempts allowed to solve the Wordle
|
321 |
`random_guess`: bool
|
|
|
331 |
`record`: bool
|
332 |
if True, creates a .txt file with the same information printed according to the indicated verbosity
|
333 |
|
|
|
334 |
Returns:
|
335 |
------
|
336 |
`stats_dict`: dict
|
337 |
dictionary containing various statistics about the function's performance trying to solve the puzzle
|
338 |
"""
|
339 |
|
340 |
+
guess = guess.lower()
|
341 |
+
target = target.lower()
|
342 |
+
|
343 |
sugg_words = []
|
344 |
|
345 |
for i in range(0, 20):
|
|
|
650 |
|
651 |
else:
|
652 |
|
653 |
+
best_next_guesses = list(potential_next_guesses)
|
654 |
+
# print (best_next_guesses)
|
655 |
+
word_ratings = get_word_entropy(best_next_guesses, word_list, normalized = True, ascending = False) # "internal" ratings
|
656 |
+
|
657 |
+
# Get max rating of all words
|
658 |
+
max_rating = -np.inf
|
659 |
+
for word, rating in word_ratings:
|
660 |
+
if rating > max_rating:
|
661 |
+
max_rating = rating
|
662 |
+
|
663 |
+
# add best rated words (all equally best entropy in next guess list) to set
|
664 |
+
best_of_the_best_1 = []
|
665 |
+
for word, rating in word_ratings:
|
666 |
+
if rating == max_rating:
|
667 |
+
best_of_the_best_1.append(word)
|
668 |
+
|
669 |
+
# only using top ten most frequent prefixes suffixes to bias. After that it the impact is especially negligible
|
670 |
+
test_starts = get_gram_freq(word_list = word_list, letters_length = 2, position = "start", search = None)[:10]
|
671 |
+
test_ends = get_gram_freq(word_list = word_list, letters_length = 2, position = "end", search = None)[:10]
|
672 |
+
|
673 |
+
# list of the best words that also have the best suffixes and prefixes
|
674 |
+
best_of_the_best_2 = []
|
675 |
+
for start_gram, start_count in test_starts:
|
676 |
+
for end_gram, end_count in test_ends:
|
677 |
+
for word in best_of_the_best_1:
|
678 |
+
if word[:2] == start_gram and word[-2:] == end_gram:
|
679 |
+
best_of_the_best_2.append(word)
|
680 |
+
|
681 |
+
if len(best_of_the_best_2) > 0:
|
682 |
+
guess = best_of_the_best_2[0]
|
683 |
+
else:
|
684 |
+
guess = best_of_the_best_1[0] # they're all equally the best of the best possible guesses so just pick the first
|
685 |
+
|
686 |
+
# guess_entropies.append(get_word_entropy([guess], word_list, normalized = True, ascending = False)[0][1])
|
687 |
+
|
688 |
+
if return_stats == False:
|
689 |
+
if verbose == True:
|
690 |
+
if len(word_ratings) <= 40:
|
691 |
+
print(f"All potential next guesses:\n\t{word_ratings}\n")
|
692 |
+
print(f"Words guessed so far:\n\t{guessed_words}.\n")
|
693 |
+
record_list.append(f"Potential next guesses: {word_ratings}\n")
|
694 |
+
record_list.append(f"Words guessed so far: {guessed_words}.\n")
|
695 |
+
else:
|
696 |
+
print(f"The top 40 potential next guesses are:\n\t{word_ratings[:40]}\n")
|
697 |
+
print(f"Words guessed so far:\n\t{guessed_words}.\n")
|
698 |
+
record_list.append(f"The top 40 potential next guesses are: {word_ratings[:40]}\n")
|
699 |
+
record_list.append(f"Words guessed so far: {guessed_words}.\n")
|
700 |
+
|
701 |
+
guess_entropies.append(get_word_entropy([guess], word_list, normalized = True, ascending = False)[0][1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
702 |
|
703 |
#### Guess has now been made -- what to do next
|
704 |
if guess_num == max_guesses: # if at max guesses allowed
|
|
|
797 |
# average_entropy = 95
|
798 |
luck = round(1 - ((((guess_num / expected_guesses) * (stats_dict['avg_intermediate_guess_entropy'] / 100)) / max_guesses) * 5), 2)
|
799 |
stats_dict['luck'] = luck
|
|
|
|
|
|
|
800 |
|
801 |
if record == True:
|
802 |
if verbose == True:
|
|
|
808 |
for line in record_list:
|
809 |
fout.write(line + "\n") # write
|
810 |
|
|
|
811 |
# if guess_num <= len(guess):
|
812 |
if guess_num <= 6:
|
813 |
stats_dict['valid_success'] = True
|
|
|
820 |
# return stats_dict
|
821 |
if hf_mod == True:
|
822 |
return record_list
|
823 |
+
|
824 |
############################################################################################################################################################
|
825 |
############################################################################################################################################################
|
826 |
############################################################################################################################################################
|
827 |
############################################################################################################################################################
|
828 |
+
|
829 |
+
def get_gram_freq(word_list: list, letters_length: int = 2, position: bool = "start", search: any = None):
|
830 |
+
"""
|
831 |
+
Given a word list, a selected number of letter, a selected word position to start from ("start" or "end"),
|
832 |
+
and an optional gram to search within the list, this function will get a frequency distribution of all n-grams
|
833 |
+
from the passed word list and returned a frequency distribution in descending order.
|
834 |
+
|
835 |
+
Parameters:
|
836 |
+
------
|
837 |
+
`word_list`: list
|
838 |
+
list of words of the same
|
839 |
+
`letters_length`: int
|
840 |
+
number of letters in succession. Size/length of "gram". Must be between 1 and length of words in word list
|
841 |
+
`position`: bool
|
842 |
+
Whether to start the gram from the start of the word (like a prefix) or the end of the word (like a suffix)
|
843 |
+
`search`: str
|
844 |
+
If != None, string of characters to search for within the generated list. If string not found in list, function will print an error message.
|
845 |
+
|
846 |
+
Returns:
|
847 |
+
------
|
848 |
+
`tup`: tuple
|
849 |
+
If search != None, will return a tuple with the passed search criteria, and its count
|
850 |
+
`sorted_gram_list`: list
|
851 |
+
List of tuples in the form of (gram, count) for each combination of the gram size in the pass word_list
|
852 |
+
"""
|
853 |
+
|
854 |
+
gram_freq_dist = {}
|
855 |
+
|
856 |
+
for word in word_list:
|
857 |
+
if position == "start":
|
858 |
+
gram = word[:letters_length] # first 2 letters
|
859 |
+
if position == "end":
|
860 |
+
gram = word[-(letters_length):] # first 2 letters
|
861 |
+
|
862 |
+
if gram not in gram_freq_dist:
|
863 |
+
gram_freq_dist[gram] = 1
|
864 |
+
else:
|
865 |
+
gram_freq_dist[gram] += 1
|
866 |
+
|
867 |
+
sorted_gram_dist = sorted(gram_freq_dist.items(), key = operator.itemgetter(1), reverse = True)
|
868 |
+
|
869 |
+
if search:
|
870 |
+
nos = []
|
871 |
+
for tup in sorted_gram_dist:
|
872 |
+
if tup[0] == search:
|
873 |
+
return tup
|
874 |
+
else:
|
875 |
+
nos.append("not here")
|
876 |
+
|
877 |
+
if len(nos) == len(sorted_gram_dist):
|
878 |
+
print ("Search criteria not found in list. Please enter a gram from within the list.")
|
879 |
+
else:
|
880 |
+
return sorted_gram_dist
|
881 |
|
882 |
def compare_wordle(word_list: list, max_guesses: int = None, guess_list: list = None,
|
883 |
player: str = None, target: str = None,
|
wordle_testing.ipynb
ADDED
@@ -0,0 +1,1654 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"attachments": {},
|
5 |
+
"cell_type": "markdown",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"## Imports"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 1,
|
14 |
+
"metadata": {},
|
15 |
+
"outputs": [],
|
16 |
+
"source": [
|
17 |
+
"import numpy as np\n",
|
18 |
+
"import random\n",
|
19 |
+
"import operator\n",
|
20 |
+
"import time\n",
|
21 |
+
"import pandas as pd\n",
|
22 |
+
"from wordle_functions import *"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "markdown",
|
27 |
+
"metadata": {},
|
28 |
+
"source": [
|
29 |
+
"## Importing datasets"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"attachments": {},
|
34 |
+
"cell_type": "markdown",
|
35 |
+
"metadata": {},
|
36 |
+
"source": [
|
37 |
+
"### official words\n",
|
38 |
+
"- official wordle word list"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"execution_count": 2,
|
44 |
+
"metadata": {},
|
45 |
+
"outputs": [
|
46 |
+
{
|
47 |
+
"name": "stdout",
|
48 |
+
"output_type": "stream",
|
49 |
+
"text": [
|
50 |
+
"2310\n"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"data": {
|
55 |
+
"text/plain": [
|
56 |
+
"['wince', 'thyme', 'mower', 'horde', 'heard']"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
"execution_count": 2,
|
60 |
+
"metadata": {},
|
61 |
+
"output_type": "execute_result"
|
62 |
+
}
|
63 |
+
],
|
64 |
+
"source": [
|
65 |
+
"### Official list\n",
|
66 |
+
"official_words = []\n",
|
67 |
+
"\n",
|
68 |
+
"with open(\"data/official_words_processed.txt\", \"r\", encoding = \"utf-8\") as f:\n",
|
69 |
+
" for word in f.read().split(\"\\n\"):\n",
|
70 |
+
" official_words.append(word)\n",
|
71 |
+
"\n",
|
72 |
+
"f.close() # closes connection to file\n",
|
73 |
+
"\n",
|
74 |
+
"print(len(official_words))\n",
|
75 |
+
"official_words[:5]"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"attachments": {},
|
80 |
+
"cell_type": "markdown",
|
81 |
+
"metadata": {},
|
82 |
+
"source": [
|
83 |
+
"### alternative list 1\n",
|
84 |
+
"- an alternate list of 5-letter words found on the web"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "code",
|
89 |
+
"execution_count": 3,
|
90 |
+
"metadata": {},
|
91 |
+
"outputs": [
|
92 |
+
{
|
93 |
+
"ename": "FileNotFoundError",
|
94 |
+
"evalue": "[Errno 2] No such file or directory: 'data/alt_words_1.txt'",
|
95 |
+
"output_type": "error",
|
96 |
+
"traceback": [
|
97 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
98 |
+
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
|
99 |
+
"\u001b[1;32m/Users/kmaurinjones/Desktop/data_science/data_science_projects/wordle_wizard/wordle_testing.ipynb Cell 7\u001b[0m in \u001b[0;36m<cell line: 4>\u001b[0;34m()\u001b[0m\n\u001b[1;32m <a href='vscode-notebook-cell:/Users/kmaurinjones/Desktop/data_science/data_science_projects/wordle_wizard/wordle_testing.ipynb#W6sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m \u001b[39m### Official list\u001b[39;00m\n\u001b[1;32m <a href='vscode-notebook-cell:/Users/kmaurinjones/Desktop/data_science/data_science_projects/wordle_wizard/wordle_testing.ipynb#W6sZmlsZQ%3D%3D?line=1'>2</a>\u001b[0m alt_words_1 \u001b[39m=\u001b[39m []\n\u001b[0;32m----> <a href='vscode-notebook-cell:/Users/kmaurinjones/Desktop/data_science/data_science_projects/wordle_wizard/wordle_testing.ipynb#W6sZmlsZQ%3D%3D?line=3'>4</a>\u001b[0m \u001b[39mwith\u001b[39;00m \u001b[39mopen\u001b[39;49m(\u001b[39m\"\u001b[39;49m\u001b[39mdata/alt_words_1.txt\u001b[39;49m\u001b[39m\"\u001b[39;49m, \u001b[39m\"\u001b[39;49m\u001b[39mr\u001b[39;49m\u001b[39m\"\u001b[39;49m, encoding \u001b[39m=\u001b[39;49m \u001b[39m\"\u001b[39;49m\u001b[39mutf-8\u001b[39;49m\u001b[39m\"\u001b[39;49m) \u001b[39mas\u001b[39;00m f:\n\u001b[1;32m <a href='vscode-notebook-cell:/Users/kmaurinjones/Desktop/data_science/data_science_projects/wordle_wizard/wordle_testing.ipynb#W6sZmlsZQ%3D%3D?line=4'>5</a>\u001b[0m \u001b[39mfor\u001b[39;00m word \u001b[39min\u001b[39;00m f\u001b[39m.\u001b[39mread()\u001b[39m.\u001b[39msplit(\u001b[39m\"\u001b[39m\u001b[39m\\n\u001b[39;00m\u001b[39m\"\u001b[39m):\n\u001b[1;32m <a href='vscode-notebook-cell:/Users/kmaurinjones/Desktop/data_science/data_science_projects/wordle_wizard/wordle_testing.ipynb#W6sZmlsZQ%3D%3D?line=5'>6</a>\u001b[0m alt_words_1\u001b[39m.\u001b[39mappend(word)\n",
|
100 |
+
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'data/alt_words_1.txt'"
|
101 |
+
]
|
102 |
+
}
|
103 |
+
],
|
104 |
+
"source": [
|
105 |
+
"### Official list\n",
|
106 |
+
"alt_words_1 = []\n",
|
107 |
+
"\n",
|
108 |
+
"with open(\"data/alt_words_1.txt\", \"r\", encoding = \"utf-8\") as f:\n",
|
109 |
+
" for word in f.read().split(\"\\n\"):\n",
|
110 |
+
" alt_words_1.append(word)\n",
|
111 |
+
"\n",
|
112 |
+
"f.close() # closes connection to file\n",
|
113 |
+
"\n",
|
114 |
+
"print(len(alt_words_1))\n",
|
115 |
+
"alt_words_1[:5]"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"attachments": {},
|
120 |
+
"cell_type": "markdown",
|
121 |
+
"metadata": {},
|
122 |
+
"source": [
|
123 |
+
"### nltk grand corpus\n",
|
124 |
+
"- Amalgamation of all words in various NLTK corpora to have as big a dataset as possible\n",
|
125 |
+
"- Developed manually"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": null,
|
131 |
+
"metadata": {},
|
132 |
+
"outputs": [],
|
133 |
+
"source": [
|
134 |
+
"### grand corpus tokens\n",
|
135 |
+
"nltk_tokens = []\n",
|
136 |
+
"\n",
|
137 |
+
"with open(\"data/nltk_grand_corpus_tokens_5.txt\", \"r\", encoding = \"utf-8\") as f:\n",
|
138 |
+
" for word in f.read().split(\"\\n\"):\n",
|
139 |
+
" nltk_tokens.append(word)\n",
|
140 |
+
"\n",
|
141 |
+
"f.close() # closes connection to file\n",
|
142 |
+
"\n",
|
143 |
+
"print(len(nltk_tokens))\n",
|
144 |
+
"nltk_tokens[:5]"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"cell_type": "markdown",
|
149 |
+
"metadata": {},
|
150 |
+
"source": [
|
151 |
+
"### nltk grand corpus types and counts"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "code",
|
156 |
+
"execution_count": null,
|
157 |
+
"metadata": {},
|
158 |
+
"outputs": [],
|
159 |
+
"source": [
|
160 |
+
"### grand corpus types and counts\n",
|
161 |
+
"nltk_counts = {}\n",
|
162 |
+
"\n",
|
163 |
+
"with open(\"data/nltk_grand_corpus_types_and_counts_5.txt\", \"r\", encoding = \"utf-8\") as f:\n",
|
164 |
+
" for line in f.read().split(\"\\n\"):\n",
|
165 |
+
" if len(line.split(\"\\t\")) == 2:\n",
|
166 |
+
" word = line.split(\"\\t\")[0]\n",
|
167 |
+
" count = line.split(\"\\t\")[1]\n",
|
168 |
+
" nltk_counts[word] = count\n",
|
169 |
+
" else:\n",
|
170 |
+
" continue\n",
|
171 |
+
"\n",
|
172 |
+
"f.close() # closes connection to file\n",
|
173 |
+
"\n",
|
174 |
+
"print(len(nltk_counts))\n",
|
175 |
+
"nltk_counts['which']"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": null,
|
181 |
+
"metadata": {},
|
182 |
+
"outputs": [],
|
183 |
+
"source": [
|
184 |
+
"### Official list\n",
|
185 |
+
"official_words = []\n",
|
186 |
+
"\n",
|
187 |
+
"with open(\"data/official_words_processed.txt\", \"r\", encoding = \"utf-8\") as f:\n",
|
188 |
+
" for word in f.read().split(\"\\n\"):\n",
|
189 |
+
" if len(word) > 0: # there's one blank entry at the start\n",
|
190 |
+
" official_words.append(word)\n",
|
191 |
+
"\n",
|
192 |
+
"f.close() # closes connection to file\n",
|
193 |
+
"\n",
|
194 |
+
"print(len(official_words))\n",
|
195 |
+
"official_words[:10]"
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"attachments": {},
|
200 |
+
"cell_type": "markdown",
|
201 |
+
"metadata": {},
|
202 |
+
"source": [
|
203 |
+
"## Wordle functions + Testing"
|
204 |
+
]
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"attachments": {},
|
208 |
+
"cell_type": "markdown",
|
209 |
+
"metadata": {},
|
210 |
+
"source": [
|
211 |
+
"### Testing `wordle_wizard()`"
|
212 |
+
]
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"cell_type": "code",
|
216 |
+
"execution_count": 13,
|
217 |
+
"metadata": {},
|
218 |
+
"outputs": [
|
219 |
+
{
|
220 |
+
"name": "stdout",
|
221 |
+
"output_type": "stream",
|
222 |
+
"text": [
|
223 |
+
"-----------------------------\n",
|
224 |
+
"\n",
|
225 |
+
"Guess 1: 'poesy'\n",
|
226 |
+
"Letters in correct positions:\n",
|
227 |
+
"\t[]\n",
|
228 |
+
"\n",
|
229 |
+
"Letters in incorrect positions:\n",
|
230 |
+
"\t[('e', 2)]\n",
|
231 |
+
"\n",
|
232 |
+
"Letters to guess again:\n",
|
233 |
+
"\t['e']\n",
|
234 |
+
"\n",
|
235 |
+
"Letters to not guess again:\n",
|
236 |
+
"\t['o', 'p', 's', 'y']\n",
|
237 |
+
"\n",
|
238 |
+
"At this point:\n",
|
239 |
+
"\t1905, 82.47% of total words have been eliminated, and\n",
|
240 |
+
"\t405, 17.53% of total words remain possible.\n",
|
241 |
+
"\n",
|
242 |
+
"The top 40 potential next guesses are:\n",
|
243 |
+
"\t[('alter', 100.0), ('later', 100.0), ('irate', 98.33), ('renal', 94.34), ('learn', 94.34), ('react', 91.3), ('crate', 91.3), ('trace', 91.3), ('cater', 91.3), ('trade', 88.34), ('leant', 88.3), ('heart', 88.13), ('earth', 88.13), ('hater', 88.13), ('aider', 86.22), ('alien', 86.18), ('crane', 85.68), ('tamer', 85.55), ('grate', 85.35), ('realm', 85.1), ('regal', 84.89), ('glare', 84.89), ('lager', 84.89), ('large', 84.89), ('eclat', 84.76), ('blare', 83.81), ('baler', 83.81), ('inter', 83.81), ('liner', 83.35), ('after', 82.43), ('flare', 81.93), ('feral', 81.93), ('delta', 81.81), ('dealt', 81.81), ('taker', 81.72), ('lathe', 81.6), ('water', 81.14), ('trice', 80.31), ('afire', 80.31), ('ramen', 79.93)]\n",
|
244 |
+
"\n",
|
245 |
+
"Words guessed so far:\n",
|
246 |
+
"\t['poesy'].\n",
|
247 |
+
"\n",
|
248 |
+
"Next guess:\n",
|
249 |
+
"\t'alter'\n",
|
250 |
+
"\n",
|
251 |
+
"-----------------------------\n",
|
252 |
+
"\n",
|
253 |
+
"Guess 2: 'alter'\n",
|
254 |
+
"Letters in correct positions:\n",
|
255 |
+
"\t[]\n",
|
256 |
+
"\n",
|
257 |
+
"Letters in incorrect positions:\n",
|
258 |
+
"\t[('a', 0), ('e', 2), ('t', 2), ('e', 3), ('r', 4)]\n",
|
259 |
+
"\n",
|
260 |
+
"Letters to guess again:\n",
|
261 |
+
"\t['a', 'e', 'r', 't']\n",
|
262 |
+
"\n",
|
263 |
+
"Letters to not guess again:\n",
|
264 |
+
"\t['l', 'o', 'p', 's', 'y']\n",
|
265 |
+
"\n",
|
266 |
+
"At this point:\n",
|
267 |
+
"\t2301, 99.61% of total words have been eliminated, and\n",
|
268 |
+
"\t9, 0.39% of total words remain possible.\n",
|
269 |
+
"\n",
|
270 |
+
"All potential next guesses:\n",
|
271 |
+
"\t[('irate', 100.0), ('crate', 70.91), ('trace', 70.91), ('react', 70.91), ('trade', 58.69), ('heart', 57.83), ('earth', 57.83), ('grate', 46.3), ('terra', 0.0)]\n",
|
272 |
+
"\n",
|
273 |
+
"Words guessed so far:\n",
|
274 |
+
"\t['poesy', 'alter'].\n",
|
275 |
+
"\n",
|
276 |
+
"Next guess:\n",
|
277 |
+
"\t'irate'\n",
|
278 |
+
"\n",
|
279 |
+
"-----------------------------\n",
|
280 |
+
"\n",
|
281 |
+
"Guess 3: 'irate'\n",
|
282 |
+
"Letters in correct positions:\n",
|
283 |
+
"\t[('r', 1), ('a', 2), ('t', 3), ('e', 4)]\n",
|
284 |
+
"\n",
|
285 |
+
"Letters in incorrect positions:\n",
|
286 |
+
"\t[('a', 0), ('e', 2), ('t', 2), ('e', 3), ('r', 4)]\n",
|
287 |
+
"\n",
|
288 |
+
"Letters to guess again:\n",
|
289 |
+
"\t['a', 'e', 'r', 't']\n",
|
290 |
+
"\n",
|
291 |
+
"Letters to not guess again:\n",
|
292 |
+
"\t['i', 'l', 'o', 'p', 's', 'y']\n",
|
293 |
+
"\n",
|
294 |
+
"At this point:\n",
|
295 |
+
"\t2308, 99.91% of total words have been eliminated, and\n",
|
296 |
+
"\t2, 0.09% of total words remain possible.\n",
|
297 |
+
"\n",
|
298 |
+
"All potential next guesses:\n",
|
299 |
+
"\t[('crate', 100.0), ('grate', 0.0)]\n",
|
300 |
+
"\n",
|
301 |
+
"Words guessed so far:\n",
|
302 |
+
"\t['poesy', 'alter', 'irate'].\n",
|
303 |
+
"\n",
|
304 |
+
"Next guess:\n",
|
305 |
+
"\t'crate'\n",
|
306 |
+
"\n",
|
307 |
+
"-----------------------------\n",
|
308 |
+
"\n",
|
309 |
+
"Guess 4: 'crate'\n",
|
310 |
+
"Letters in correct positions:\n",
|
311 |
+
"\t[('r', 1), ('a', 2), ('t', 3), ('e', 4)]\n",
|
312 |
+
"\n",
|
313 |
+
"Letters in incorrect positions:\n",
|
314 |
+
"\t[('a', 0), ('e', 2), ('t', 2), ('e', 3), ('r', 4)]\n",
|
315 |
+
"\n",
|
316 |
+
"Letters to guess again:\n",
|
317 |
+
"\t['a', 'e', 'r', 't']\n",
|
318 |
+
"\n",
|
319 |
+
"Letters to not guess again:\n",
|
320 |
+
"\t['c', 'i', 'l', 'o', 'p', 's', 'y']\n",
|
321 |
+
"\n",
|
322 |
+
"At this point:\n",
|
323 |
+
"\t2309, 99.96% of total words have been eliminated, and\n",
|
324 |
+
"\t1, 0.04% of total words remain possible.\n",
|
325 |
+
"\n",
|
326 |
+
"The only remaining possible word is:\n",
|
327 |
+
"\t'grate'\n",
|
328 |
+
"\n",
|
329 |
+
"Next guess:\n",
|
330 |
+
"\t'grate'\n",
|
331 |
+
"\n",
|
332 |
+
"-----------------------------\n",
|
333 |
+
"\n",
|
334 |
+
"Guess 5: 'grate'\n",
|
335 |
+
"\n",
|
336 |
+
"Congratulations! The Wordle has been solved in 5 guesses!\n",
|
337 |
+
"There were still 1 guesses remaining.\n",
|
338 |
+
"\n",
|
339 |
+
"The target word was 'grate'.\n",
|
340 |
+
"\n",
|
341 |
+
"-----------------------------\n"
|
342 |
+
]
|
343 |
+
}
|
344 |
+
],
|
345 |
+
"source": [
|
346 |
+
"test_1 = wordle_wizard(word_list = official_words, max_guesses = 6, \n",
|
347 |
+
" guess = \"paint\", target = \"force\",\n",
|
348 |
+
" random_guess = True, random_target = True, \n",
|
349 |
+
" verbose = True, drama = 0, return_stats = False, record = False)"
|
350 |
+
]
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"cell_type": "code",
|
354 |
+
"execution_count": null,
|
355 |
+
"metadata": {},
|
356 |
+
"outputs": [],
|
357 |
+
"source": [
|
358 |
+
"for val in [False, True]:\n",
|
359 |
+
" wordle_wizard(word_list = official_words, max_guesses = 6, \n",
|
360 |
+
" guess = \"arose\", target = \"syrup\", bias = 'entropy', \n",
|
361 |
+
" random_guess = False, random_target = False, \n",
|
362 |
+
" verbose = val, drama = 0, return_stats = False, record = True)"
|
363 |
+
]
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"attachments": {},
|
367 |
+
"cell_type": "markdown",
|
368 |
+
"metadata": {},
|
369 |
+
"source": [
|
370 |
+
"### Testing on 3-letter words"
|
371 |
+
]
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"cell_type": "code",
|
375 |
+
"execution_count": null,
|
376 |
+
"metadata": {},
|
377 |
+
"outputs": [],
|
378 |
+
"source": [
|
379 |
+
"### 3 letters\n",
|
380 |
+
"words_3_letters = []\n",
|
381 |
+
"words_3_types_counts = {}\n",
|
382 |
+
"\n",
|
383 |
+
"with open(\"data/nltk_grand_corpus_types_and_counts_3.txt\", \"r\", encoding = \"utf-8\") as f:\n",
|
384 |
+
" for line in f.read().split(\"\\n\"):\n",
|
385 |
+
" word_freq = line.split(\"\\t\")\n",
|
386 |
+
" if len(word_freq) == 2: # how many items are in each line, NOT the len of the word in the line\n",
|
387 |
+
" word = word_freq[0]\n",
|
388 |
+
" freq = word_freq[1]\n",
|
389 |
+
" if word.isascii() == True:\n",
|
390 |
+
" words_3_letters.append(word)\n",
|
391 |
+
" words_3_types_counts[word] = freq\n",
|
392 |
+
"\n",
|
393 |
+
"f.close() # closes connection to file\n",
|
394 |
+
"\n",
|
395 |
+
"print(len(words_3_letters))\n",
|
396 |
+
"print(words_3_letters[:5])\n",
|
397 |
+
"words_3_types_counts['the']"
|
398 |
+
]
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"cell_type": "code",
|
402 |
+
"execution_count": null,
|
403 |
+
"metadata": {},
|
404 |
+
"outputs": [],
|
405 |
+
"source": [
|
406 |
+
"for val in [False, True]:\n",
|
407 |
+
" wordle_wizard(word_list = words_3_letters, max_guesses = 6, \n",
|
408 |
+
" guess = \"the\", target = \"his\", bias = 'entropy', \n",
|
409 |
+
" random_guess = False, random_target = False, \n",
|
410 |
+
" verbose = val, drama = 0, return_stats = False, record = True)"
|
411 |
+
]
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"attachments": {},
|
415 |
+
"cell_type": "markdown",
|
416 |
+
"metadata": {},
|
417 |
+
"source": [
|
418 |
+
"### Testing on 4-letter words"
|
419 |
+
]
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"cell_type": "code",
|
423 |
+
"execution_count": null,
|
424 |
+
"metadata": {},
|
425 |
+
"outputs": [],
|
426 |
+
"source": [
|
427 |
+
"### 3 letters\n",
|
428 |
+
"words_4_letters = []\n",
|
429 |
+
"words_4_types_counts = {}\n",
|
430 |
+
"\n",
|
431 |
+
"with open(\"data/nltk_grand_corpus_types_and_counts_4.txt\", \"r\", encoding = \"utf-8\") as f:\n",
|
432 |
+
" for line in f.read().split(\"\\n\"):\n",
|
433 |
+
" word_freq = line.split(\"\\t\")\n",
|
434 |
+
" if len(word_freq) == 2: # how many items are in each line, NOT the len of the word in the line\n",
|
435 |
+
" word = word_freq[0]\n",
|
436 |
+
" freq = word_freq[1]\n",
|
437 |
+
" if word.isascii() == True:\n",
|
438 |
+
" words_4_letters.append(word)\n",
|
439 |
+
" words_4_types_counts[word] = freq\n",
|
440 |
+
"\n",
|
441 |
+
"f.close() # closes connection to file\n",
|
442 |
+
"\n",
|
443 |
+
"print(len(words_4_letters))\n",
|
444 |
+
"print(words_4_letters[:5])\n",
|
445 |
+
"words_4_types_counts['that']"
|
446 |
+
]
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"cell_type": "code",
|
450 |
+
"execution_count": null,
|
451 |
+
"metadata": {},
|
452 |
+
"outputs": [],
|
453 |
+
"source": [
|
454 |
+
"for val in [False, True]:\n",
|
455 |
+
" wordle_wizard(word_list = words_4_letters, max_guesses = 6, \n",
|
456 |
+
" guess = \"have\", target = \"this\", bias = 'entropy', \n",
|
457 |
+
" random_guess = False, random_target = False, \n",
|
458 |
+
" verbose = val, drama = 0, return_stats = False, record = True)"
|
459 |
+
]
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"attachments": {},
|
463 |
+
"cell_type": "markdown",
|
464 |
+
"metadata": {},
|
465 |
+
"source": [
|
466 |
+
"### Testing on 6-letter words"
|
467 |
+
]
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"cell_type": "code",
|
471 |
+
"execution_count": null,
|
472 |
+
"metadata": {},
|
473 |
+
"outputs": [],
|
474 |
+
"source": [
|
475 |
+
"### 6 letters\n",
|
476 |
+
"words_6_letters = []\n",
|
477 |
+
"words_6_types_counts = {}\n",
|
478 |
+
"\n",
|
479 |
+
"with open(\"data/nltk_grand_corpus_types_and_counts_6.txt\", \"r\", encoding = \"utf-8\") as f:\n",
|
480 |
+
" for line in f.read().split(\"\\n\"):\n",
|
481 |
+
" word_freq = line.split(\"\\t\")\n",
|
482 |
+
" if len(word_freq) == 2: # how many items are in each line, NOT the len of the word in the line\n",
|
483 |
+
" word = word_freq[0]\n",
|
484 |
+
" freq = word_freq[1]\n",
|
485 |
+
" if word.isascii() == True:\n",
|
486 |
+
" words_6_letters.append(word)\n",
|
487 |
+
" words_6_types_counts[word] = freq\n",
|
488 |
+
"\n",
|
489 |
+
"f.close() # closes connection to file\n",
|
490 |
+
"\n",
|
491 |
+
"print(len(words_6_letters))\n",
|
492 |
+
"print(words_6_letters[:5])\n",
|
493 |
+
"words_6_types_counts[words_6_letters[0]]"
|
494 |
+
]
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"cell_type": "code",
|
498 |
+
"execution_count": null,
|
499 |
+
"metadata": {},
|
500 |
+
"outputs": [],
|
501 |
+
"source": [
|
502 |
+
"for val in [False, True]:\n",
|
503 |
+
" wordle_wizard(word_list = words_6_letters, max_guesses = 6, \n",
|
504 |
+
" guess = \"little\", target = \"before\", bias = 'entropy', \n",
|
505 |
+
" random_guess = False, random_target = False, \n",
|
506 |
+
" verbose = val, drama = 0, return_stats = False, record = True)"
|
507 |
+
]
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"attachments": {},
|
511 |
+
"cell_type": "markdown",
|
512 |
+
"metadata": {},
|
513 |
+
"source": [
|
514 |
+
"### Testing on 7-letter words"
|
515 |
+
]
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"cell_type": "code",
|
519 |
+
"execution_count": null,
|
520 |
+
"metadata": {},
|
521 |
+
"outputs": [],
|
522 |
+
"source": [
|
523 |
+
"### 7 letters\n",
|
524 |
+
"words_7_letters = []\n",
|
525 |
+
"words_7_types_counts = {}\n",
|
526 |
+
"\n",
|
527 |
+
"with open(\"data/nltk_grand_corpus_types_and_counts_7.txt\", \"r\", encoding = \"utf-8\") as f:\n",
|
528 |
+
" for line in f.read().split(\"\\n\"):\n",
|
529 |
+
" word_freq = line.split(\"\\t\")\n",
|
530 |
+
" if len(word_freq) == 2: # how many items are in each line, NOT the len of the word in the line\n",
|
531 |
+
" word = word_freq[0]\n",
|
532 |
+
" freq = word_freq[1]\n",
|
533 |
+
" if word.isascii() == True:\n",
|
534 |
+
" words_7_letters.append(word)\n",
|
535 |
+
" words_7_types_counts[word] = freq\n",
|
536 |
+
"\n",
|
537 |
+
"f.close() # closes connection to file\n",
|
538 |
+
"\n",
|
539 |
+
"print(len(words_7_letters))\n",
|
540 |
+
"print(words_7_letters[:5])\n",
|
541 |
+
"words_7_types_counts[words_7_letters[0]]"
|
542 |
+
]
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"cell_type": "code",
|
546 |
+
"execution_count": null,
|
547 |
+
"metadata": {},
|
548 |
+
"outputs": [],
|
549 |
+
"source": [
|
550 |
+
"for val in [False, True]:\n",
|
551 |
+
" wordle_wizard(word_list = words_7_letters, max_guesses = 6, \n",
|
552 |
+
" guess = \"because\", target = \"through\", bias = 'entropy', \n",
|
553 |
+
" random_guess = True, random_target = True, \n",
|
554 |
+
" verbose = val, drama = 0, return_stats = False, record = True)"
|
555 |
+
]
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"attachments": {},
|
559 |
+
"cell_type": "markdown",
|
560 |
+
"metadata": {},
|
561 |
+
"source": [
|
562 |
+
"### Testing on 8-letter words"
|
563 |
+
]
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"cell_type": "code",
|
567 |
+
"execution_count": null,
|
568 |
+
"metadata": {},
|
569 |
+
"outputs": [],
|
570 |
+
"source": [
|
571 |
+
"### 8 letters\n",
|
572 |
+
"words_8_letters = []\n",
|
573 |
+
"words_8_types_counts = {}\n",
|
574 |
+
"\n",
|
575 |
+
"with open(\"data/nltk_grand_corpus_types_and_counts_8.txt\", \"r\", encoding = \"utf-8\") as f:\n",
|
576 |
+
" for line in f.read().split(\"\\n\"):\n",
|
577 |
+
" word_freq = line.split(\"\\t\")\n",
|
578 |
+
" if len(word_freq) == 2: # how many items are in each line, NOT the len of the word in the line\n",
|
579 |
+
" word = word_freq[0]\n",
|
580 |
+
" freq = word_freq[1]\n",
|
581 |
+
" if word.isascii() == True:\n",
|
582 |
+
" words_8_letters.append(word)\n",
|
583 |
+
" words_8_types_counts[word] = freq\n",
|
584 |
+
"\n",
|
585 |
+
"f.close() # closes connection to file\n",
|
586 |
+
"\n",
|
587 |
+
"print(len(words_8_letters))\n",
|
588 |
+
"print(words_8_letters[:5])\n",
|
589 |
+
"words_8_types_counts[words_8_letters[0]]"
|
590 |
+
]
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"cell_type": "code",
|
594 |
+
"execution_count": null,
|
595 |
+
"metadata": {},
|
596 |
+
"outputs": [],
|
597 |
+
"source": [
|
598 |
+
"for val in [False, True]:\n",
|
599 |
+
" wordle_wizard(word_list = words_8_letters, max_guesses = 6, \n",
|
600 |
+
" guess = \"trinidad\", target = \"together\", bias = 'entropy', \n",
|
601 |
+
" random_guess = False, random_target = False, \n",
|
602 |
+
" verbose = val, drama = 0, return_stats = False, record = True)"
|
603 |
+
]
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"attachments": {},
|
607 |
+
"cell_type": "markdown",
|
608 |
+
"metadata": {},
|
609 |
+
"source": [
|
610 |
+
"### Testing on 9-letter words"
|
611 |
+
]
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"cell_type": "code",
|
615 |
+
"execution_count": null,
|
616 |
+
"metadata": {},
|
617 |
+
"outputs": [],
|
618 |
+
"source": [
|
619 |
+
"### 9 letters\n",
|
620 |
+
"words_9_letters = []\n",
|
621 |
+
"words_9_types_counts = {}\n",
|
622 |
+
"\n",
|
623 |
+
"with open(\"data/nltk_grand_corpus_types_and_counts_9.txt\", \"r\", encoding = \"utf-8\") as f:\n",
|
624 |
+
" for line in f.read().split(\"\\n\"):\n",
|
625 |
+
" word_freq = line.split(\"\\t\")\n",
|
626 |
+
" if len(word_freq) == 2: # how many items are in each line, NOT the len of the word in the line\n",
|
627 |
+
" word = word_freq[0]\n",
|
628 |
+
" freq = word_freq[1]\n",
|
629 |
+
" if word.isascii() == True:\n",
|
630 |
+
" words_9_letters.append(word)\n",
|
631 |
+
" words_9_types_counts[word] = freq\n",
|
632 |
+
"\n",
|
633 |
+
"f.close() # closes connection to file\n",
|
634 |
+
"\n",
|
635 |
+
"print(len(words_9_letters))\n",
|
636 |
+
"print(words_9_letters[:5])\n",
|
637 |
+
"words_9_types_counts[words_9_letters[0]]"
|
638 |
+
]
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"cell_type": "code",
|
642 |
+
"execution_count": null,
|
643 |
+
"metadata": {},
|
644 |
+
"outputs": [],
|
645 |
+
"source": [
|
646 |
+
"for val in [False, True]:\n",
|
647 |
+
" wordle_wizard(word_list = words_9_letters, max_guesses = 6, \n",
|
648 |
+
" guess = \"something\", target = \"character\", bias = 'entropy', \n",
|
649 |
+
" random_guess = True, random_target = False, \n",
|
650 |
+
" verbose = val, drama = 0, return_stats = False, record = True)"
|
651 |
+
]
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"attachments": {},
|
655 |
+
"cell_type": "markdown",
|
656 |
+
"metadata": {},
|
657 |
+
"source": [
|
658 |
+
"### Testing on 10-letter words"
|
659 |
+
]
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"cell_type": "code",
|
663 |
+
"execution_count": null,
|
664 |
+
"metadata": {},
|
665 |
+
"outputs": [],
|
666 |
+
"source": [
|
667 |
+
"### 10 letters\n",
|
668 |
+
"words_10_letters = []\n",
|
669 |
+
"words_10_types_counts = {}\n",
|
670 |
+
"\n",
|
671 |
+
"with open(\"data/nltk_grand_corpus_types_and_counts_10.txt\", \"r\", encoding = \"utf-8\") as f:\n",
|
672 |
+
" for line in f.read().split(\"\\n\"):\n",
|
673 |
+
" word_freq = line.split(\"\\t\")\n",
|
674 |
+
" if len(word_freq) == 2: # how many items are in each line, NOT the len of the word in the line\n",
|
675 |
+
" word = word_freq[0]\n",
|
676 |
+
" freq = word_freq[1]\n",
|
677 |
+
" if word.isascii() == True:\n",
|
678 |
+
" words_10_letters.append(word)\n",
|
679 |
+
" words_10_types_counts[word] = freq\n",
|
680 |
+
"\n",
|
681 |
+
"f.close() # closes connection to file\n",
|
682 |
+
"\n",
|
683 |
+
"print(len(words_10_letters))\n",
|
684 |
+
"print(words_10_letters[:5])\n",
|
685 |
+
"words_10_types_counts[words_10_letters[0]]"
|
686 |
+
]
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"cell_type": "code",
|
690 |
+
"execution_count": null,
|
691 |
+
"metadata": {},
|
692 |
+
"outputs": [],
|
693 |
+
"source": [
|
694 |
+
"for val in [False, True]:\n",
|
695 |
+
" wordle_wizard(word_list = words_10_letters, max_guesses = 6, \n",
|
696 |
+
" guess = \"characters\", target = \"theologies\", bias = 'entropy', \n",
|
697 |
+
" random_guess = True, random_target = False, \n",
|
698 |
+
" verbose = val, drama = 0, return_stats = False, record = True)"
|
699 |
+
]
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"cell_type": "code",
|
703 |
+
"execution_count": null,
|
704 |
+
"metadata": {},
|
705 |
+
"outputs": [],
|
706 |
+
"source": [
|
707 |
+
"wordle_wizard(word_list = official_words, max_guesses = 5, \n",
|
708 |
+
" guess = \"quote\", target = \"silly\", bias = 'entropy', \n",
|
709 |
+
" random_guess = False, random_target = False, \n",
|
710 |
+
" verbose = True, drama = 0, return_stats = False, record = False)"
|
711 |
+
]
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"attachments": {},
|
715 |
+
"cell_type": "markdown",
|
716 |
+
"metadata": {},
|
717 |
+
"source": [
|
718 |
+
"### `compare_wordle()` testing"
|
719 |
+
]
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"cell_type": "code",
|
723 |
+
"execution_count": null,
|
724 |
+
"metadata": {},
|
725 |
+
"outputs": [],
|
726 |
+
"source": [
|
727 |
+
"df = pd.read_csv(\"compared_data/wordle_humans - Sheet1.csv\")\n",
|
728 |
+
"print(df.shape)\n",
|
729 |
+
"df"
|
730 |
+
]
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"cell_type": "code",
|
734 |
+
"execution_count": null,
|
735 |
+
"metadata": {},
|
736 |
+
"outputs": [],
|
737 |
+
"source": [
|
738 |
+
"df = pd.read_csv(\"compared_data/wordle_humans - Sheet1.csv\")\n",
|
739 |
+
"df\n",
|
740 |
+
"convert_row(df, 37)"
|
741 |
+
]
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"cell_type": "code",
|
745 |
+
"execution_count": null,
|
746 |
+
"metadata": {},
|
747 |
+
"outputs": [],
|
748 |
+
"source": [
|
749 |
+
"### TESTING DF INTERPRETATION\n",
|
750 |
+
"\n",
|
751 |
+
"df = pd.read_csv(\"compared_data/wordle_humans - Sheet1.csv\")\n",
|
752 |
+
"\n",
|
753 |
+
"row = 37\n",
|
754 |
+
"\n",
|
755 |
+
"print(convert_row(df, row))\n",
|
756 |
+
"player = convert_row(df, row)[0]\n",
|
757 |
+
"target_word = convert_row(df, row)[1]\n",
|
758 |
+
"guess_list = convert_row(df, row)[2]\n",
|
759 |
+
"\n",
|
760 |
+
"compare_wordle(word_list = official_words, max_guesses = 6, \n",
|
761 |
+
" guess_list = guess_list, player = player, target = target_word,\n",
|
762 |
+
" verbose = False, return_stats = True, record = False)"
|
763 |
+
]
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"attachments": {},
|
767 |
+
"cell_type": "markdown",
|
768 |
+
"metadata": {},
|
769 |
+
"source": [
|
770 |
+
"## Comparing player solutions against wizard solutions"
|
771 |
+
]
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"cell_type": "code",
|
775 |
+
"execution_count": null,
|
776 |
+
"metadata": {},
|
777 |
+
"outputs": [],
|
778 |
+
"source": [
|
779 |
+
"def create_compared_df(player_df, to_csv: bool = False, show_shapes: bool = False):\n",
|
780 |
+
" \"\"\"\n",
|
781 |
+
" Creates master df of player wordle scores compared to how wordle_wizard would perform on the same puzzles\n",
|
782 |
+
"\n",
|
783 |
+
" Parameters:\n",
|
784 |
+
" -----\n",
|
785 |
+
" `player_df`: Pandas dataFrame object\n",
|
786 |
+
" df of player scores of wordle puzzles\n",
|
787 |
+
" `to_csv`: bool\n",
|
788 |
+
" If True, writes returned df to csv\n",
|
789 |
+
" `show_shapes`: bool\n",
|
790 |
+
" If True, prints shape of new df before and after deleting duplicate rows (created by wordle_wizard running the same puzzles multiple times)\n",
|
791 |
+
" \n",
|
792 |
+
" Returns:\n",
|
793 |
+
" -----\n",
|
794 |
+
" `df_master`: Pandas dataFrame object\n",
|
795 |
+
" df of player scores and wordle_wizard scores of wordle puzzles\n",
|
796 |
+
" \"\"\"\n",
|
797 |
+
"\n",
|
798 |
+
" stats_master = {}\n",
|
799 |
+
" excepts = []\n",
|
800 |
+
" for row in player_df.index:\n",
|
801 |
+
" player = convert_row(player_df, row)[0]\n",
|
802 |
+
" target_word = convert_row(player_df, row)[1]\n",
|
803 |
+
" guess_list = convert_row(player_df, row)[2]\n",
|
804 |
+
" try:\n",
|
805 |
+
" complete = compare_wordle(word_list = official_words, max_guesses = 6, \n",
|
806 |
+
" guess_list = guess_list, player = player, target = target_word,\n",
|
807 |
+
" verbose = True, return_stats = True, record = False)\n",
|
808 |
+
" for metric, results in complete.items():\n",
|
809 |
+
" if metric in stats_master:\n",
|
810 |
+
" for result in results:\n",
|
811 |
+
" stats_master[metric].append(result)\n",
|
812 |
+
" else:\n",
|
813 |
+
" stats_master[metric] = []\n",
|
814 |
+
" for result in results:\n",
|
815 |
+
" stats_master[metric].append(result)\n",
|
816 |
+
" except:\n",
|
817 |
+
" AttributeError\n",
|
818 |
+
" excepts.append(guess_list)\n",
|
819 |
+
"\n",
|
820 |
+
" df_master = pd.DataFrame(stats_master)\n",
|
821 |
+
" print(df_master.columns.tolist())\n",
|
822 |
+
"\n",
|
823 |
+
" # Re-organizing columns to a more logical order (for viewing)\n",
|
824 |
+
" df_master = df_master[['first_guess', 'target_word', 'player', 'num_guesses', 'expected_guesses', 'luck', 'first_guess_vowels', 'first_guess_consonants',\n",
|
825 |
+
" 'target_vowels', 'target_consonants', 'first_guess_entropy', 'target_entropy',\n",
|
826 |
+
" 'target_guessed', 'mid_guesses_avg_vows', 'mid_guesses_avg_cons', 'avg_perf_letters',\n",
|
827 |
+
" 'avg_wrong_pos_letters', 'avg_wrong_letters', 'avg_remaining', 'avg_intermediate_guess_entropy',\n",
|
828 |
+
" 'valid_success']]\n",
|
829 |
+
"\n",
|
830 |
+
" # print(excepts)\n",
|
831 |
+
" if show_shapes == True:\n",
|
832 |
+
" print(df_master.shape) # check shape before deleting dups\n",
|
833 |
+
"\n",
|
834 |
+
" # Delete duplicate rows (some created by process)\n",
|
835 |
+
" df_master.drop_duplicates(inplace = True)\n",
|
836 |
+
" \n",
|
837 |
+
" if to_csv == True:\n",
|
838 |
+
" df_master.to_csv('compared_data/players_compared.csv') # write new data to csv\n",
|
839 |
+
" \n",
|
840 |
+
" if show_shapes == True:\n",
|
841 |
+
" print(df_master.shape) # check shape after deleting dups\n",
|
842 |
+
" \n",
|
843 |
+
" return df_master.reset_index().drop(columns = \"index\")"
|
844 |
+
]
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"cell_type": "code",
|
848 |
+
"execution_count": null,
|
849 |
+
"metadata": {},
|
850 |
+
"outputs": [],
|
851 |
+
"source": [
|
852 |
+
"test_word = \"test 1 \"\n",
|
853 |
+
"test_word.strip().lower()"
|
854 |
+
]
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"cell_type": "code",
|
858 |
+
"execution_count": null,
|
859 |
+
"metadata": {},
|
860 |
+
"outputs": [],
|
861 |
+
"source": [
|
862 |
+
"df = pd.read_csv(\"compared_data/wordle_humans - Sheet1.csv\")\n",
|
863 |
+
"\n",
|
864 |
+
"df_master = create_compared_df(df, to_csv = True, show_shapes = True)\n",
|
865 |
+
"df_master"
|
866 |
+
]
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"cell_type": "code",
|
870 |
+
"execution_count": null,
|
871 |
+
"metadata": {},
|
872 |
+
"outputs": [],
|
873 |
+
"source": [
|
874 |
+
"print(df_master.query(\"player == 'aidan'\")['num_guesses'].mean())\n",
|
875 |
+
"print(df_master.query(\"player == 'aidan'\").shape)\n",
|
876 |
+
"df_master.query(\"player == 'aidan'\").head()"
|
877 |
+
]
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"cell_type": "code",
|
881 |
+
"execution_count": null,
|
882 |
+
"metadata": {},
|
883 |
+
"outputs": [],
|
884 |
+
"source": [
|
885 |
+
"print(df_master.query(\"player == 'dad'\")['num_guesses'].mean())\n",
|
886 |
+
"print(df_master.query(\"player == 'dad'\").shape)\n",
|
887 |
+
"df_master.query(\"player == 'dad'\").head()"
|
888 |
+
]
|
889 |
+
},
|
890 |
+
{
|
891 |
+
"cell_type": "code",
|
892 |
+
"execution_count": null,
|
893 |
+
"metadata": {},
|
894 |
+
"outputs": [],
|
895 |
+
"source": [
|
896 |
+
"print(df_master.query(\"player == 'diane'\")['num_guesses'].mean())\n",
|
897 |
+
"print(df_master.query(\"player == 'diane'\").shape)\n",
|
898 |
+
"df_master.query(\"player == 'diane'\").head()"
|
899 |
+
]
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"cell_type": "code",
|
903 |
+
"execution_count": null,
|
904 |
+
"metadata": {},
|
905 |
+
"outputs": [],
|
906 |
+
"source": [
|
907 |
+
"print(df_master.query(\"player == 'wizard'\")['num_guesses'].mean())\n",
|
908 |
+
"print(df_master.query(\"player == 'wizard'\").shape)\n",
|
909 |
+
"df_master.query(\"player == 'wizard'\").head(40)"
|
910 |
+
]
|
911 |
+
},
|
912 |
+
{
|
913 |
+
"attachments": {},
|
914 |
+
"cell_type": "markdown",
|
915 |
+
"metadata": {},
|
916 |
+
"source": [
|
917 |
+
"## Prefix/Suffix bias"
|
918 |
+
]
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"cell_type": "code",
|
922 |
+
"execution_count": null,
|
923 |
+
"metadata": {},
|
924 |
+
"outputs": [],
|
925 |
+
"source": [
|
926 |
+
"def get_gram_freq(word_list: list, letters_length: int = 2, position: bool = \"start\", search: any = None):\n",
|
927 |
+
" \"\"\"\n",
|
928 |
+
" Given a word list, a selected number of letter, a selected word position to start from (\"start\" or \"end\"),\n",
|
929 |
+
" and an optional gram to search within the list, this function will get a frequency distribution of all n-grams\n",
|
930 |
+
" from the passed word list and returned a frequency distribution in descending order.\n",
|
931 |
+
"\n",
|
932 |
+
" Parameters:\n",
|
933 |
+
" ------\n",
|
934 |
+
" `word_list`: list\n",
|
935 |
+
" list of words of the same \n",
|
936 |
+
" `letters_length`: int\n",
|
937 |
+
" number of letters in succession. Size/length of \"gram\". Must be between 1 and length of words in word list\n",
|
938 |
+
" `position`: bool\n",
|
939 |
+
" Whether to start the gram from the start of the word (like a prefix) or the end of the word (like a suffix)\n",
|
940 |
+
" `search`: str\n",
|
941 |
+
" If != None, string of characters to search for within the generated list. If string not found in list, function will print an error message.\n",
|
942 |
+
"\n",
|
943 |
+
" Returns:\n",
|
944 |
+
" ------\n",
|
945 |
+
" `tup`: tuple\n",
|
946 |
+
" If search != None, will return a tuple with the passed search criteria, and its count\n",
|
947 |
+
" `sorted_gram_list`: list\n",
|
948 |
+
" List of tuples in the form of (gram, count) for each combination of the gram size in the pass word_list\n",
|
949 |
+
" \"\"\"\n",
|
950 |
+
"\n",
|
951 |
+
" gram_freq_dist = {}\n",
|
952 |
+
"\n",
|
953 |
+
" for word in word_list:\n",
|
954 |
+
" if position == \"start\":\n",
|
955 |
+
" gram = word[:letters_length] # first 2 letters\n",
|
956 |
+
" if position == \"end\":\n",
|
957 |
+
" gram = word[-(letters_length):] # first 2 letters\n",
|
958 |
+
"\n",
|
959 |
+
" if gram not in gram_freq_dist:\n",
|
960 |
+
" gram_freq_dist[gram] = 1\n",
|
961 |
+
" else:\n",
|
962 |
+
" gram_freq_dist[gram] += 1\n",
|
963 |
+
"\n",
|
964 |
+
" sorted_gram_dist = sorted(gram_freq_dist.items(), key = operator.itemgetter(1), reverse = True)\n",
|
965 |
+
"\n",
|
966 |
+
" if search:\n",
|
967 |
+
" nos = []\n",
|
968 |
+
" for tup in sorted_gram_dist:\n",
|
969 |
+
" if tup[0] == search:\n",
|
970 |
+
" return tup\n",
|
971 |
+
" else:\n",
|
972 |
+
" nos.append(\"not here\")\n",
|
973 |
+
" \n",
|
974 |
+
" if len(nos) == len(sorted_gram_dist):\n",
|
975 |
+
" print (\"Search criteria not found in list. Please enter a gram from within the list.\")\n",
|
976 |
+
" else:\n",
|
977 |
+
" return sorted_gram_dist\n",
|
978 |
+
"\n",
|
979 |
+
"get_gram_freq(word_list = official_words, letters_length = 2, position = \"start\", search = None)[:10]"
|
980 |
+
]
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"cell_type": "code",
|
984 |
+
"execution_count": null,
|
985 |
+
"metadata": {},
|
986 |
+
"outputs": [],
|
987 |
+
"source": [
|
988 |
+
"test_starts = get_gram_freq(word_list = official_words, letters_length = 2, position = \"start\", search = None)[:10]\n",
|
989 |
+
"test_ends = get_gram_freq(word_list = official_words, letters_length = 2, position = \"end\", search = None)[:10]\n",
|
990 |
+
"\n",
|
991 |
+
"test_words = official_words\n",
|
992 |
+
"\n",
|
993 |
+
"for start_gram, start_count in test_starts:\n",
|
994 |
+
" for end_gram, end_count in test_ends:\n",
|
995 |
+
" for word in [\"natal\", 'fatal']:\n",
|
996 |
+
" # for word in test_words:\n",
|
997 |
+
" if word[:2] == start_gram and word[-2:] == end_gram:\n",
|
998 |
+
" print (word, start_gram, end_gram)"
|
999 |
+
]
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"cell_type": "code",
|
1003 |
+
"execution_count": null,
|
1004 |
+
"metadata": {},
|
1005 |
+
"outputs": [],
|
1006 |
+
"source": [
|
1007 |
+
"def wordle_wizard(word_list: list, max_guesses: int = None, \n",
|
1008 |
+
" guess: str = None, target: str = None,\n",
|
1009 |
+
" random_guess: bool = False, random_target: bool = False, \n",
|
1010 |
+
" verbose: bool = False, drama: float = None, \n",
|
1011 |
+
" return_stats: bool = False, record: bool = False, hf_mod: bool = True):\n",
|
1012 |
+
" \"\"\"\n",
|
1013 |
+
" Mimicking the popular web game, this function matches a current word to a target word automatically, in the most statistically optimal way possible.\n",
|
1014 |
+
"\n",
|
1015 |
+
" Parameters:\n",
|
1016 |
+
" ------\n",
|
1017 |
+
" `word_list`: list\n",
|
1018 |
+
" list of valid words to be considered\n",
|
1019 |
+
" `guess`: str\n",
|
1020 |
+
" a string -- must be the same length as `target_word`\n",
|
1021 |
+
" `target`: str\n",
|
1022 |
+
" a string -- must be the same length as `opening_word`\n",
|
1023 |
+
" `max_guesses`: int\n",
|
1024 |
+
" the maximum number of attempts allowed to solve the Wordle\n",
|
1025 |
+
" `random_guess`: bool\n",
|
1026 |
+
" if True, randomly chooses a starting word from all words within `word_list`. If False, passed starting word must be used instead\n",
|
1027 |
+
" `random_target`: bool\n",
|
1028 |
+
" if True, randomly chooses a target word from all words within `word_list`. If False, passed target word must be used instead\n",
|
1029 |
+
" `verbose`: bool\n",
|
1030 |
+
" if True, prints progress and explanation of how function solves the puzzle. If False, prints only the guessed word at each guess.\n",
|
1031 |
+
" `drama`: float or int\n",
|
1032 |
+
" if int provided, each guess' output is delayed by that number of seconds, else each output is shown as quickly as possible. For ~dRaMaTiC eFfEcT~\n",
|
1033 |
+
" `return_stats`: bool\n",
|
1034 |
+
" if True, prints nothing and returns a dictionary of various statistics about the function's performance trying to solve the puzzle\n",
|
1035 |
+
" `record`: bool\n",
|
1036 |
+
" if True, creates a .txt file with the same information printed according to the indicated verbosity\n",
|
1037 |
+
"\n",
|
1038 |
+
" Returns:\n",
|
1039 |
+
" ------\n",
|
1040 |
+
" `stats_dict`: dict\n",
|
1041 |
+
" dictionary containing various statistics about the function's performance trying to solve the puzzle\n",
|
1042 |
+
" \"\"\"\n",
|
1043 |
+
"\n",
|
1044 |
+
" guess = guess.lower()\n",
|
1045 |
+
" target = target.lower()\n",
|
1046 |
+
"\n",
|
1047 |
+
" sugg_words = []\n",
|
1048 |
+
"\n",
|
1049 |
+
" for i in range(0, 20):\n",
|
1050 |
+
" ran_int = random.randint(0, len(word_list) - 1)\n",
|
1051 |
+
" word = word_list[ran_int]\n",
|
1052 |
+
" sugg_words.append(word)\n",
|
1053 |
+
"\n",
|
1054 |
+
" if guess not in word_list:\n",
|
1055 |
+
" print (\"Guess word not in passed word list.\\nOnly words within the given word list are valid.\")\n",
|
1056 |
+
" print (f\"Here are some examples of valid words from the passed word list.\\n\\t{sugg_words[:10]}\")\n",
|
1057 |
+
" return None\n",
|
1058 |
+
" \n",
|
1059 |
+
" if target not in word_list:\n",
|
1060 |
+
" print (\"Target word not in passed word list.\\nOnly words within the given word list are valid.\")\n",
|
1061 |
+
" print (f\"Here are some examples of valid words from the passed word list.\\n\\t{sugg_words[-10:]}\")\n",
|
1062 |
+
" return None\n",
|
1063 |
+
"\n",
|
1064 |
+
" if random_guess == True:\n",
|
1065 |
+
" randomint_guess = random.randint(0, len(word_list) - 1)\n",
|
1066 |
+
" guess = word_list[randomint_guess]\n",
|
1067 |
+
"\n",
|
1068 |
+
" if random_target == True:\n",
|
1069 |
+
" randomint_target = random.randint(0, len(word_list) - 1)\n",
|
1070 |
+
" target = word_list[randomint_target]\n",
|
1071 |
+
"\n",
|
1072 |
+
" stats_dict = {}\n",
|
1073 |
+
" stats_dict['first_guess'] = guess\n",
|
1074 |
+
" stats_dict['target_word'] = target\n",
|
1075 |
+
" stats_dict['first_guess_vowels'] = float(count_vows_cons(guess, y_vow = True)['vows'])\n",
|
1076 |
+
" stats_dict['first_guess_consonants'] = float(count_vows_cons(guess, y_vow = True)['cons'])\n",
|
1077 |
+
" stats_dict['target_vowels'] = float(count_vows_cons(target, y_vow = True)['vows'])\n",
|
1078 |
+
" stats_dict['target_consonants'] = float(count_vows_cons(target, y_vow = True)['cons'])\n",
|
1079 |
+
" \n",
|
1080 |
+
" # get entropy of the first guess word and target word in the entire word_list\n",
|
1081 |
+
" for tup in get_word_entropy(word_list, word_list, normalized = True):\n",
|
1082 |
+
" if tup[0] == guess:\n",
|
1083 |
+
" stats_dict['first_guess_entropy'] = tup[1]\n",
|
1084 |
+
" if tup[0] == target:\n",
|
1085 |
+
" stats_dict['target_entropy'] = tup[1]\n",
|
1086 |
+
"\n",
|
1087 |
+
" guess_entropies = []\n",
|
1088 |
+
" guess_entropies.append(stats_dict['first_guess_entropy'])\n",
|
1089 |
+
"\n",
|
1090 |
+
" # luck_guess_1 = round(1 - ((1 / len(word_list)) * guess_entropies[0] / 100), 2) * 100\n",
|
1091 |
+
"\n",
|
1092 |
+
" english_alphabet = \"abcdefghijklmnopqrstuvwxyz\"\n",
|
1093 |
+
"\n",
|
1094 |
+
" word_list_sorted_counts = get_letter_counts(english_alphabet, word_list, sort = \"descending\")\n",
|
1095 |
+
" \n",
|
1096 |
+
" wordlen = len(guess)\n",
|
1097 |
+
" letter_positions = set(i for i in range(0, wordlen))\n",
|
1098 |
+
"\n",
|
1099 |
+
" guess_set = set()\n",
|
1100 |
+
" perfect_dict = {}\n",
|
1101 |
+
" wrong_pos_dict = {}\n",
|
1102 |
+
" wrong_pos_set = set()\n",
|
1103 |
+
" dont_guess_again = set()\n",
|
1104 |
+
"\n",
|
1105 |
+
" guessed_words = [] # running set of guessed words\n",
|
1106 |
+
" guess_num = 0 # baseline for variable\n",
|
1107 |
+
" dont_guess_words = set()\n",
|
1108 |
+
" incorrect_positions = []\n",
|
1109 |
+
" reduction_per_guess = []\n",
|
1110 |
+
"\n",
|
1111 |
+
" if max_guesses == None: # if no value is passed, default is len(guess)\n",
|
1112 |
+
" max_guesses = wordlen\n",
|
1113 |
+
" else: # else it is the value passed\n",
|
1114 |
+
" max_guesses = max_guesses\n",
|
1115 |
+
"\n",
|
1116 |
+
" perfect_letts_per_guess = []\n",
|
1117 |
+
" wrong_pos_per_guess = []\n",
|
1118 |
+
" wrong_letts_per_guess = []\n",
|
1119 |
+
"\n",
|
1120 |
+
" record_list = []\n",
|
1121 |
+
"\n",
|
1122 |
+
" while guess: # while there is any guess -- there are conditions to break it at the bottom\n",
|
1123 |
+
"\n",
|
1124 |
+
" guess_num += 1\n",
|
1125 |
+
"\n",
|
1126 |
+
" guessed_words.append(guess)\n",
|
1127 |
+
"\n",
|
1128 |
+
" if drama:\n",
|
1129 |
+
" time.sleep(drama)\n",
|
1130 |
+
"\n",
|
1131 |
+
" # guess_num += 1 # each time the guess is processed\n",
|
1132 |
+
" if return_stats == False:\n",
|
1133 |
+
" if guess_num == 1:\n",
|
1134 |
+
" print(\"-----------------------------\\n\")\n",
|
1135 |
+
" record_list.append(\"-----------------------------\\n\")\n",
|
1136 |
+
" \n",
|
1137 |
+
" if return_stats == False:\n",
|
1138 |
+
" print(f\"Guess {guess_num}: '{guess}'\")\n",
|
1139 |
+
" record_list.append(f\"Guess {guess_num}: '{guess}'\")\n",
|
1140 |
+
"\n",
|
1141 |
+
" if guess == target:\n",
|
1142 |
+
" stats_dict['target_guessed'] = True\n",
|
1143 |
+
" if return_stats == False:\n",
|
1144 |
+
" if guess_num == 1:\n",
|
1145 |
+
" print(f\"Congratulations! The Wordle has been solved in {guess_num} guess, that's amazingly lucky!\")\n",
|
1146 |
+
" print(f\"The target word was {target}\")\n",
|
1147 |
+
" record_list.append(f\"Congratulations! The Wordle has been solved in {guess_num} guess, that's amazingly lucky!\")\n",
|
1148 |
+
" record_list.append(f\"The target word was '{target}'.\")\n",
|
1149 |
+
" perfect_letts_per_guess.append(5)\n",
|
1150 |
+
" wrong_pos_per_guess.append(0)\n",
|
1151 |
+
" wrong_letts_per_guess.append(0)\n",
|
1152 |
+
" break\n",
|
1153 |
+
"\n",
|
1154 |
+
" guess_set = set()\n",
|
1155 |
+
" wrong_pos_set = set()\n",
|
1156 |
+
"\n",
|
1157 |
+
" #### Step 2 -- ALL PERFECT\n",
|
1158 |
+
" for i in letter_positions: # number of letters in each word (current word and target word)\n",
|
1159 |
+
" guess_set.add(guess[i])\n",
|
1160 |
+
"\n",
|
1161 |
+
" if guess[i] not in perfect_dict:\n",
|
1162 |
+
" perfect_dict[guess[i]] = set()\n",
|
1163 |
+
" if guess[i] not in wrong_pos_dict:\n",
|
1164 |
+
" wrong_pos_dict[guess[i]] = set()\n",
|
1165 |
+
"\n",
|
1166 |
+
" ### EVALUATE CURRENT GUESS\n",
|
1167 |
+
" if guess[i] == target[i]: # letter == correct and position == correct\n",
|
1168 |
+
" perfect_dict[guess[i]].add(i)\n",
|
1169 |
+
"\n",
|
1170 |
+
" if (guess[i] != target[i] and guess[i] in target): # letter == correct and position != correct\n",
|
1171 |
+
" wrong_pos_dict[guess[i]].add(i)\n",
|
1172 |
+
" wrong_pos_set.add(guess[i])\n",
|
1173 |
+
"\n",
|
1174 |
+
" if guess[i] not in target: # if letter is not relevant at all\n",
|
1175 |
+
" dont_guess_again.add(guess[i])\n",
|
1176 |
+
"\n",
|
1177 |
+
" #### Step 3 -- ALL PERFECT\n",
|
1178 |
+
" next_letters = set()\n",
|
1179 |
+
" for letter, positions in perfect_dict.items():\n",
|
1180 |
+
" if len(positions) > 0:\n",
|
1181 |
+
" next_letters.add(letter)\n",
|
1182 |
+
"\n",
|
1183 |
+
" for letter, positions in wrong_pos_dict.items():\n",
|
1184 |
+
" if len(positions) > 0:\n",
|
1185 |
+
" next_letters.add(letter)\n",
|
1186 |
+
"\n",
|
1187 |
+
" #### List of tuples of correct letter positions in new valid words. Eg: [('e', 2), ('a', 3)]\n",
|
1188 |
+
" perfect_letters = []\n",
|
1189 |
+
" for letter, positions in perfect_dict.items():\n",
|
1190 |
+
" for pos in positions:\n",
|
1191 |
+
" if len(positions) > 0:\n",
|
1192 |
+
" perfect_letters.append((letter, pos))\n",
|
1193 |
+
"\n",
|
1194 |
+
" #### all words that have correct letters in same spots\n",
|
1195 |
+
" words_matching_correct_all = []\n",
|
1196 |
+
" for word in word_list:\n",
|
1197 |
+
" word_set = set()\n",
|
1198 |
+
" for letter, pos in perfect_letters:\n",
|
1199 |
+
" if pos < len(word):\n",
|
1200 |
+
" if word[pos] == letter:\n",
|
1201 |
+
" words_matching_correct_all.append(word)\n",
|
1202 |
+
"\n",
|
1203 |
+
" #### excluding words with letters in known incorrect positions\n",
|
1204 |
+
" for letter, positions in wrong_pos_dict.items():\n",
|
1205 |
+
" for pos in positions:\n",
|
1206 |
+
" if len(positions) > 0:\n",
|
1207 |
+
" if (letter, pos) not in incorrect_positions:\n",
|
1208 |
+
" incorrect_positions.append((letter, pos))\n",
|
1209 |
+
"\n",
|
1210 |
+
" # sorting lists of tuples just to make them look nice in the printout\n",
|
1211 |
+
" incorrect_positions = sorted(incorrect_positions, key = operator.itemgetter(1), reverse = False)\n",
|
1212 |
+
" perfect_letters = sorted(perfect_letters, key = operator.itemgetter(1), reverse = False)\n",
|
1213 |
+
"\n",
|
1214 |
+
" #### all words that have correct letters in incorrect spots -- so they can be excluded efficiently\n",
|
1215 |
+
" \n",
|
1216 |
+
" # print(incorrect_positions)\n",
|
1217 |
+
" \n",
|
1218 |
+
" for word in word_list:\n",
|
1219 |
+
" word_set = set()\n",
|
1220 |
+
" for letter, pos in incorrect_positions:\n",
|
1221 |
+
" if pos < len(word):\n",
|
1222 |
+
" if word[pos] == letter:\n",
|
1223 |
+
" dont_guess_words.add(word)\n",
|
1224 |
+
" for word in word_list:\n",
|
1225 |
+
" word_set = set()\n",
|
1226 |
+
" for letter, pos in incorrect_positions:\n",
|
1227 |
+
" if pos < len(word):\n",
|
1228 |
+
" if word[pos] == letter:\n",
|
1229 |
+
" dont_guess_words.add(word)\n",
|
1230 |
+
"\n",
|
1231 |
+
" for bad_letter in dont_guess_again:\n",
|
1232 |
+
" for word in word_list:\n",
|
1233 |
+
" if (bad_letter in word and word not in dont_guess_words):\n",
|
1234 |
+
" dont_guess_words.add(word)\n",
|
1235 |
+
"\n",
|
1236 |
+
" if return_stats == False:\n",
|
1237 |
+
" if verbose == True:\n",
|
1238 |
+
" print(f\"Letters in correct positions:\\n\\t{perfect_letters}\\n\")\n",
|
1239 |
+
" print(f\"Letters in incorrect positions:\\n\\t{incorrect_positions}\\n\")\n",
|
1240 |
+
" print (f\"Letters to guess again:\\n\\t{sorted(list(next_letters), reverse = False)}\\n\")\n",
|
1241 |
+
" print(f\"Letters to not guess again:\\n\\t{sorted(list(dont_guess_again), reverse = False)}\\n\") # works\n",
|
1242 |
+
" \n",
|
1243 |
+
" if len(perfect_letters) == 0:\n",
|
1244 |
+
" record_list.append(f\"Letters in correct positions: None\\n\")\n",
|
1245 |
+
" else:\n",
|
1246 |
+
" record_list.append(f\"Letters in correct positions: {perfect_letters}\\n\")\n",
|
1247 |
+
" \n",
|
1248 |
+
" if len(incorrect_positions) == 0:\n",
|
1249 |
+
" record_list.append(f\"Letters in incorrect positions: None\\n\")\n",
|
1250 |
+
" else:\n",
|
1251 |
+
" record_list.append(f\"Letters in incorrect positions: {incorrect_positions}\\n\")\n",
|
1252 |
+
" \n",
|
1253 |
+
" if len(next_letters) == 0:\n",
|
1254 |
+
" record_list.append(f\"Letters to guess again: None\\n\")\n",
|
1255 |
+
" else:\n",
|
1256 |
+
" record_list.append(f\"Letters to guess again: {sorted(list(next_letters), reverse = False)}\\n\")\n",
|
1257 |
+
" # if\n",
|
1258 |
+
" # record_list.append(f\"Letters to not guess again: {sorted(list(dont_guess_again), reverse = False)}\\n\") # works\n",
|
1259 |
+
"\n",
|
1260 |
+
" # Returns True\n",
|
1261 |
+
" # print(A.issubset(B)) # \"if everything in A is in B\", returns Bool\n",
|
1262 |
+
"\n",
|
1263 |
+
" perfect_letts_per_guess.append(len(perfect_letters))\n",
|
1264 |
+
" wrong_pos_per_guess.append(len(incorrect_positions))\n",
|
1265 |
+
" wrong_letts_per_guess.append(len(dont_guess_again))\n",
|
1266 |
+
"\n",
|
1267 |
+
" potential_next_guesses = set()\n",
|
1268 |
+
" middle_set = set()\n",
|
1269 |
+
"\n",
|
1270 |
+
" if len(perfect_letters) == 0 and len(incorrect_positions) == 0: # if there are NEITHER perfect letters, NOR incorrect positions, ....\n",
|
1271 |
+
" for word in word_list:\n",
|
1272 |
+
" if word not in dont_guess_words:\n",
|
1273 |
+
" if word not in guessed_words:\n",
|
1274 |
+
" potential_next_guesses.add(word)\n",
|
1275 |
+
" \n",
|
1276 |
+
" # print(f\"GUESS {guess_num} : TEST 1-1\")\n",
|
1277 |
+
"\n",
|
1278 |
+
" if len(perfect_letters) == 0 and len(incorrect_positions) != 0: # if there are no perfect letters whatsoever, but there ARE incorrect positions ....\n",
|
1279 |
+
" for word in word_list:\n",
|
1280 |
+
" for incor_letter, incor_pos in incorrect_positions:\n",
|
1281 |
+
" if incor_pos < len(word):\n",
|
1282 |
+
" if word[incor_pos] != incor_letter:\n",
|
1283 |
+
" if word not in dont_guess_words: # just in case\n",
|
1284 |
+
" word_set = set()\n",
|
1285 |
+
" for letter in word:\n",
|
1286 |
+
" word_set.add(letter)\n",
|
1287 |
+
" \n",
|
1288 |
+
" if next_letters.issubset(word_set):\n",
|
1289 |
+
" if word not in guessed_words:\n",
|
1290 |
+
" if len(dont_guess_again) > 0:\n",
|
1291 |
+
" for bad_letter in dont_guess_again:\n",
|
1292 |
+
" if bad_letter not in word:\n",
|
1293 |
+
" # potential_next_guesses.append(word)\n",
|
1294 |
+
" potential_next_guesses.add(word)\n",
|
1295 |
+
" else:\n",
|
1296 |
+
" potential_next_guesses.add(word)\n",
|
1297 |
+
" \n",
|
1298 |
+
" # print(f\"GUESS {guess_num} : TEST 2-1\")\n",
|
1299 |
+
"\n",
|
1300 |
+
" else:\n",
|
1301 |
+
" for word in word_list:\n",
|
1302 |
+
" if word not in dont_guess_words: # just in case\n",
|
1303 |
+
" word_set = set()\n",
|
1304 |
+
" for letter in word:\n",
|
1305 |
+
" word_set.add(letter)\n",
|
1306 |
+
" if next_letters.issubset(word_set):\n",
|
1307 |
+
" if word not in guessed_words:\n",
|
1308 |
+
" # print (\"TEST 3-2\")\n",
|
1309 |
+
"\n",
|
1310 |
+
" if len(dont_guess_again) > 0:\n",
|
1311 |
+
" for bad_letter in dont_guess_again:\n",
|
1312 |
+
" if bad_letter not in word:\n",
|
1313 |
+
" middle_set.add(word)\n",
|
1314 |
+
" else:\n",
|
1315 |
+
" middle_set.add(word)\n",
|
1316 |
+
" for word in middle_set:\n",
|
1317 |
+
" dummy_list = []\n",
|
1318 |
+
" for good_lett, good_pos in perfect_letters:\n",
|
1319 |
+
" if word[good_pos] == good_lett:\n",
|
1320 |
+
" dummy_list.append(1)\n",
|
1321 |
+
" if len(dummy_list) == len(perfect_letters):\n",
|
1322 |
+
" potential_next_guesses.add(word)\n",
|
1323 |
+
" for word in middle_set:\n",
|
1324 |
+
" dummy_list = []\n",
|
1325 |
+
" for bad_lett, bad_pos in incorrect_positions:\n",
|
1326 |
+
" if bad_pos < len(word):\n",
|
1327 |
+
" if word[bad_pos] == bad_lett:\n",
|
1328 |
+
" dummy_list.append(1)\n",
|
1329 |
+
" if len(dummy_list) > 0:\n",
|
1330 |
+
" potential_next_guesses.remove(word)\n",
|
1331 |
+
" \n",
|
1332 |
+
" # print(f\"GUESS {guess_num} : TEST 3-1\")\n",
|
1333 |
+
"\n",
|
1334 |
+
" if return_stats == False:\n",
|
1335 |
+
" if verbose == True:\n",
|
1336 |
+
" print(f\"At this point:\")\n",
|
1337 |
+
" print(f\"\\t{len(word_list) - len(potential_next_guesses)}, {round((len(word_list) - len(potential_next_guesses)) / len(word_list) * 100, 2)}% of total words have been eliminated, and\")\n",
|
1338 |
+
" print(f\"\\t{len(potential_next_guesses)}, {round(len(potential_next_guesses) / len(word_list) * 100, 2)}% of total words remain possible.\\n\")\n",
|
1339 |
+
" # record_list.append(f\"At this point:\")\n",
|
1340 |
+
" record_list.append(f\"{len(word_list) - len(potential_next_guesses)} ({round((len(word_list) - len(potential_next_guesses)) / len(word_list) * 100, 2)}% of all) words have been eliminated, and {len(potential_next_guesses)} ({round(len(potential_next_guesses) / len(word_list) * 100, 2)}% of all) words are still possible.\\n\")\n",
|
1341 |
+
" \n",
|
1342 |
+
" reduction_per_guess.append(len(potential_next_guesses))\n",
|
1343 |
+
" \n",
|
1344 |
+
" #### Guessing next word\n",
|
1345 |
+
" if len(potential_next_guesses) == 1:\n",
|
1346 |
+
"\n",
|
1347 |
+
" if return_stats == False:\n",
|
1348 |
+
" if verbose == True:\n",
|
1349 |
+
" print(f\"The only remaining possible word is:\\n\\t'{list(potential_next_guesses)[0]}'\\n\")\n",
|
1350 |
+
" record_list.append(f\"The only remaining possible word is: '{list(potential_next_guesses)[0]}'\\n\")\n",
|
1351 |
+
" \n",
|
1352 |
+
" guess = list(potential_next_guesses)[0]\n",
|
1353 |
+
" guess_entropies.append(get_word_entropy([guess], word_list, normalized = True, ascending = False)[0][1])\n",
|
1354 |
+
"\n",
|
1355 |
+
" else:\n",
|
1356 |
+
"\n",
|
1357 |
+
" best_next_guesses = list(potential_next_guesses) \n",
|
1358 |
+
" # print (best_next_guesses)\n",
|
1359 |
+
" word_ratings = get_word_entropy(best_next_guesses, word_list, normalized = True, ascending = False) # \"internal\" ratings\n",
|
1360 |
+
" \n",
|
1361 |
+
" # Get max rating of all words\n",
|
1362 |
+
" max_rating = -np.inf\n",
|
1363 |
+
" for word, rating in word_ratings:\n",
|
1364 |
+
" if rating > max_rating:\n",
|
1365 |
+
" max_rating = rating\n",
|
1366 |
+
"\n",
|
1367 |
+
" # add best rated words (all equally best entropy in next guess list) to set\n",
|
1368 |
+
" best_of_the_best_1 = []\n",
|
1369 |
+
" for word, rating in word_ratings:\n",
|
1370 |
+
" if rating == max_rating:\n",
|
1371 |
+
" best_of_the_best_1.append(word)\n",
|
1372 |
+
"\n",
|
1373 |
+
" # only using top ten most frequent prefixes suffixes to bias. After that it the impact is especially negligible\n",
|
1374 |
+
" test_starts = get_gram_freq(word_list = word_list, letters_length = 2, position = \"start\", search = None)[:10]\n",
|
1375 |
+
" test_ends = get_gram_freq(word_list = word_list, letters_length = 2, position = \"end\", search = None)[:10]\n",
|
1376 |
+
"\n",
|
1377 |
+
" # list of the best words that also have the best suffixes and prefixes\n",
|
1378 |
+
" best_of_the_best_2 = []\n",
|
1379 |
+
" for start_gram, start_count in test_starts:\n",
|
1380 |
+
" for end_gram, end_count in test_ends:\n",
|
1381 |
+
" for word in test_words:\n",
|
1382 |
+
" if word[:2] == start_gram and word[-2:] == end_gram:\n",
|
1383 |
+
" best_of_the_best_2.append(word)\n",
|
1384 |
+
"\n",
|
1385 |
+
" if len(best_of_the_best_2) > 0:\n",
|
1386 |
+
" guess = best_of_the_best_1[0]\n",
|
1387 |
+
" else:\n",
|
1388 |
+
" guess = best_of_the_best_2[0] # they're all equally the best of the best possible guesses so just pick the first\n",
|
1389 |
+
" \n",
|
1390 |
+
" # guess_entropies.append(get_word_entropy([guess], word_list, normalized = True, ascending = False)[0][1])\n",
|
1391 |
+
"\n",
|
1392 |
+
" if return_stats == False:\n",
|
1393 |
+
" if verbose == True:\n",
|
1394 |
+
" if len(word_ratings) <= 40:\n",
|
1395 |
+
" print(f\"All potential next guesses:\\n\\t{word_ratings}\\n\")\n",
|
1396 |
+
" print(f\"Words guessed so far:\\n\\t{guessed_words}.\\n\")\n",
|
1397 |
+
" record_list.append(f\"Potential next guesses: {word_ratings}\\n\")\n",
|
1398 |
+
" record_list.append(f\"Words guessed so far: {guessed_words}.\\n\")\n",
|
1399 |
+
" else:\n",
|
1400 |
+
" print(f\"The top 40 potential next guesses are:\\n\\t{word_ratings[:40]}\\n\")\n",
|
1401 |
+
" print(f\"Words guessed so far:\\n\\t{guessed_words}.\\n\")\n",
|
1402 |
+
" record_list.append(f\"The top 40 potential next guesses are: {word_ratings[:40]}\\n\")\n",
|
1403 |
+
" record_list.append(f\"Words guessed so far: {guessed_words}.\\n\")\n",
|
1404 |
+
"\n",
|
1405 |
+
" guess_entropies.append(get_word_entropy([guess], word_list, normalized = True, ascending = False)[0][1])\n",
|
1406 |
+
"\n",
|
1407 |
+
" #### Guess has now been made -- what to do next\n",
|
1408 |
+
" if guess_num == max_guesses: # if at max guesses allowed\n",
|
1409 |
+
" guessed_words.append(guess)\n",
|
1410 |
+
" stats_dict['target_guessed'] = False\n",
|
1411 |
+
" if return_stats == False:\n",
|
1412 |
+
" if verbose == True:\n",
|
1413 |
+
" # print(\"-----------------------------\\n\")\n",
|
1414 |
+
" print(f\"Unfortunately, the Wordle could not be solved in {max_guesses} guesses.\\n\")\n",
|
1415 |
+
" print(f\"The target word was '{target}'. Better luck next time!\\n\")\n",
|
1416 |
+
" print(\"-----------------------------\\n\")\n",
|
1417 |
+
" record_list.append(f\"Unfortunately, the Wordle could not be solved in {max_guesses} guesses.\\n\")\n",
|
1418 |
+
" record_list.append(f\"The target word was '{target}'. Better luck next time!\\n\")\n",
|
1419 |
+
" record_list.append(\"-----------------------------\\n\")\n",
|
1420 |
+
" else:\n",
|
1421 |
+
" print(f\"\\nUnfortunately, the Wordle could not be solved in {max_guesses} guesses.\")\n",
|
1422 |
+
" print(f\"The target word was '{target}'. Better luck next time!\\n\")\n",
|
1423 |
+
" record_list.append(f\"Unfortunately, the Wordle could not be solved in {max_guesses} guesses.\")\n",
|
1424 |
+
" record_list.append(f\"The target word was '{target}'. Better luck next time!\\n\")\n",
|
1425 |
+
" break\n",
|
1426 |
+
" else: # if not at max guesses yet allowed\n",
|
1427 |
+
" # stats_dict['target_guessed'] = False\n",
|
1428 |
+
" if return_stats == False:\n",
|
1429 |
+
" if verbose == True:\n",
|
1430 |
+
" print(f\"Next guess:\\n\\t'{guess}'\")\n",
|
1431 |
+
" print(\"\\n-----------------------------\\n\")\n",
|
1432 |
+
" record_list.append(f\"Next guess: '{guess}'\")\n",
|
1433 |
+
" record_list.append(\"-----------------------------\\n\")\n",
|
1434 |
+
"\n",
|
1435 |
+
" if guess == target:\n",
|
1436 |
+
" guess_num += 1\n",
|
1437 |
+
" guessed_words.append(guess)\n",
|
1438 |
+
" stats_dict['target_guessed'] = True\n",
|
1439 |
+
"\n",
|
1440 |
+
" if return_stats == False:\n",
|
1441 |
+
" print(f\"Guess {guess_num}: '{guess}'\\n\")\n",
|
1442 |
+
" print(f\"Congratulations! The Wordle has been solved in {guess_num} guesses!\")\n",
|
1443 |
+
" record_list.append(f\"Guess {guess_num}: '{guess}'\\n\")\n",
|
1444 |
+
" record_list.append(f\"Congratulations! The Wordle has been solved in {guess_num} guesses!\")\n",
|
1445 |
+
"\n",
|
1446 |
+
" if max_guesses - guess_num == 0:\n",
|
1447 |
+
" print(f\"Lucky! It was the last guess.\")\n",
|
1448 |
+
" record_list.append(f\"Lucky! It was the last guess.\")\n",
|
1449 |
+
" else:\n",
|
1450 |
+
" print(f\"There were still {max_guesses - guess_num} guesses remaining.\")\n",
|
1451 |
+
" record_list.append(f\"There were still {max_guesses - guess_num} guesses remaining.\")\n",
|
1452 |
+
"\n",
|
1453 |
+
" if return_stats == False: \n",
|
1454 |
+
" # stats_dict['target_guessed'] = True \n",
|
1455 |
+
" print(f\"\\nThe target word was '{target}'.\")\n",
|
1456 |
+
" print(\"\\n-----------------------------\")\n",
|
1457 |
+
" record_list.append(f\"The target word was '{target}'.\")\n",
|
1458 |
+
" record_list.append(\"-----------------------------\")\n",
|
1459 |
+
" break\n",
|
1460 |
+
"\n",
|
1461 |
+
" #### STATS STUFF \n",
|
1462 |
+
" mid_guesses_vows = 0\n",
|
1463 |
+
" mid_guesses_cons = 0\n",
|
1464 |
+
" avg_perf_letters = 0\n",
|
1465 |
+
" avg_wrong_pos_letters = 0\n",
|
1466 |
+
" avg_wrong_letters = 0\n",
|
1467 |
+
"\n",
|
1468 |
+
" for i, word in enumerate(guessed_words):\n",
|
1469 |
+
" mid_guesses_vows += count_vows_cons(word, y_vow = True)['vows']\n",
|
1470 |
+
" mid_guesses_cons += count_vows_cons(word, y_vow = True)['cons']\n",
|
1471 |
+
" \n",
|
1472 |
+
" for i in range(0, len(guessed_words) - 1):\n",
|
1473 |
+
" avg_perf_letters += perfect_letts_per_guess[i]\n",
|
1474 |
+
" avg_wrong_pos_letters += wrong_pos_per_guess[i]\n",
|
1475 |
+
" avg_wrong_letters += wrong_letts_per_guess[i]\n",
|
1476 |
+
"\n",
|
1477 |
+
" stats_dict['mid_guesses_avg_vows'] = float(round(mid_guesses_vows / len(guessed_words), 2))\n",
|
1478 |
+
" stats_dict['mid_guesses_avg_cons'] = float(round(mid_guesses_cons / len(guessed_words), 2))\n",
|
1479 |
+
"\n",
|
1480 |
+
" stats_dict['avg_perf_letters'] = float(round(np.mean(avg_perf_letters), 2))\n",
|
1481 |
+
" stats_dict['avg_wrong_pos_letters'] = float(round(np.mean(avg_wrong_pos_letters), 2))\n",
|
1482 |
+
" stats_dict['avg_wrong_letters'] = float(round(np.mean(avg_wrong_letters), 2))\n",
|
1483 |
+
" \n",
|
1484 |
+
" # average number of words remaining after each guess -- the higher this is, the luckier the person got (the lower, the more guesses it took)\n",
|
1485 |
+
" stats_dict['avg_remaining'] = float(round(np.mean(reduction_per_guess), 2))\n",
|
1486 |
+
"\n",
|
1487 |
+
" # avg entropy of each guessed word relative to all other words possible at that moment -- this should consistently be 100 for the algorithm, but will be different for user\n",
|
1488 |
+
" if len(guess_entropies) > 1: # in case of guessing it correctly on the first try\n",
|
1489 |
+
" sum_entropies = 0\n",
|
1490 |
+
" for entropy in guess_entropies:\n",
|
1491 |
+
" sum_entropies += entropy\n",
|
1492 |
+
"\n",
|
1493 |
+
" average_entropy = float(round(sum_entropies / len(guess_entropies), 2))\n",
|
1494 |
+
" stats_dict['avg_intermediate_guess_entropy'] = average_entropy\n",
|
1495 |
+
" else:\n",
|
1496 |
+
" stats_dict['avg_intermediate_guess_entropy'] = float(100)\n",
|
1497 |
+
"\n",
|
1498 |
+
" expected_guesses = 3.85\n",
|
1499 |
+
"\n",
|
1500 |
+
" # guess_num = 3\n",
|
1501 |
+
" # average_entropy = 95\n",
|
1502 |
+
" luck = round(1 - ((((guess_num / expected_guesses) * (stats_dict['avg_intermediate_guess_entropy'] / 100)) / max_guesses) * 5), 2)\n",
|
1503 |
+
" stats_dict['luck'] = luck\n",
|
1504 |
+
"\n",
|
1505 |
+
" if record == True:\n",
|
1506 |
+
" if verbose == True:\n",
|
1507 |
+
" with open(f\"solutions/{guessed_words[0]}_{target}_wizard_detailed.txt\", \"w\") as fout:\n",
|
1508 |
+
" for line in record_list:\n",
|
1509 |
+
" fout.write(line + \"\\n\") # write each line of list of printed text to .txt file\n",
|
1510 |
+
" else:\n",
|
1511 |
+
" with open(f\"solutions/{guessed_words[0]}_{target}_wizard_summary.txt\", \"w\") as fout:\n",
|
1512 |
+
" for line in record_list:\n",
|
1513 |
+
" fout.write(line + \"\\n\") # write\n",
|
1514 |
+
"\n",
|
1515 |
+
" # if guess_num <= len(guess):\n",
|
1516 |
+
" if guess_num <= 6:\n",
|
1517 |
+
" stats_dict['valid_success'] = True\n",
|
1518 |
+
" else:\n",
|
1519 |
+
" stats_dict['valid_success'] = False\n",
|
1520 |
+
"\n",
|
1521 |
+
" stats_dict['num_guesses'] = float(guess_num)\n",
|
1522 |
+
"\n",
|
1523 |
+
" # if return_stats == True:\n",
|
1524 |
+
" # return stats_dict\n",
|
1525 |
+
" if hf_mod == True:\n",
|
1526 |
+
" return record_list"
|
1527 |
+
]
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"cell_type": "code",
|
1531 |
+
"execution_count": null,
|
1532 |
+
"metadata": {},
|
1533 |
+
"outputs": [],
|
1534 |
+
"source": [
|
1535 |
+
"test_1 = wordle_wizard(word_list = official_words, max_guesses = 6, \n",
|
1536 |
+
" guess = \"quota\", target = \"fatAl\",\n",
|
1537 |
+
" random_guess = False, random_target = False, \n",
|
1538 |
+
" verbose = True, drama = 0, return_stats = False, record = False)"
|
1539 |
+
]
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"cell_type": "code",
|
1543 |
+
"execution_count": null,
|
1544 |
+
"metadata": {},
|
1545 |
+
"outputs": [],
|
1546 |
+
"source": [
|
1547 |
+
"suffix_freq_dist = {}\n",
|
1548 |
+
"prefix_freq_dist = {}\n",
|
1549 |
+
"\n",
|
1550 |
+
"for word in official_words:\n",
|
1551 |
+
" prefix = word[:2] # first 2 letters\n",
|
1552 |
+
" suffix = word[-2:] # last 2 letters\n",
|
1553 |
+
" if prefix not in prefix_freq_dist:\n",
|
1554 |
+
" prefix_freq_dist[prefix] = 1\n",
|
1555 |
+
" else:\n",
|
1556 |
+
" prefix_freq_dist[prefix] += 1\n",
|
1557 |
+
"\n",
|
1558 |
+
" if suffix not in suffix_freq_dist:\n",
|
1559 |
+
" suffix_freq_dist[suffix] = 1\n",
|
1560 |
+
" else:\n",
|
1561 |
+
" suffix_freq_dist[suffix] += 1\n",
|
1562 |
+
"\n",
|
1563 |
+
"suffix_types = [key for key in suffix_freq_dist.keys()]\n",
|
1564 |
+
"prefix_types = [key for key in prefix_freq_dist.keys()]\n",
|
1565 |
+
"\n",
|
1566 |
+
"sorted_prefix_dist = sorted(prefix_freq_dist.items(), key = operator.itemgetter(1), reverse = True)\n",
|
1567 |
+
"sorted_suffix_dist = sorted(suffix_freq_dist.items(), key = operator.itemgetter(1), reverse = True)\n",
|
1568 |
+
"\n",
|
1569 |
+
"print(\"Prefixes:\")\n",
|
1570 |
+
"print(len(sorted_prefix_dist))\n",
|
1571 |
+
"print(sorted_prefix_dist[:10])\n",
|
1572 |
+
"print(\"-----\")\n",
|
1573 |
+
"print(\"Suffixes:\")\n",
|
1574 |
+
"print(len(sorted_suffix_dist))\n",
|
1575 |
+
"print(sorted_suffix_dist[:10])\n",
|
1576 |
+
"\n",
|
1577 |
+
"for tup in sorted_prefix_dist:\n",
|
1578 |
+
" if tup[0] in [\"ho\", 'jo', 'go']:\n",
|
1579 |
+
" print (tup)"
|
1580 |
+
]
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"cell_type": "code",
|
1584 |
+
"execution_count": null,
|
1585 |
+
"metadata": {},
|
1586 |
+
"outputs": [],
|
1587 |
+
"source": [
|
1588 |
+
"grams_freq_dist = {}\n",
|
1589 |
+
"gram_len = 3\n",
|
1590 |
+
"\n",
|
1591 |
+
"for word in official_words:\n",
|
1592 |
+
" for i in range(0, len(word) - (gram_len - 1)): # so it doesn't index out of range\n",
|
1593 |
+
" gram = word[i:i + gram_len]\n",
|
1594 |
+
"\n",
|
1595 |
+
" if gram not in grams_freq_dist:\n",
|
1596 |
+
" grams_freq_dist[gram] = 1\n",
|
1597 |
+
" else:\n",
|
1598 |
+
" grams_freq_dist[gram] += 1\n",
|
1599 |
+
"\n",
|
1600 |
+
"print(len(grams_freq_dist))\n",
|
1601 |
+
"sorted_gram_dist = sorted(grams_freq_dist.items(), key = operator.itemgetter(1), reverse = True)\n",
|
1602 |
+
"sorted_gram_dist[:15]"
|
1603 |
+
]
|
1604 |
+
},
|
1605 |
+
{
|
1606 |
+
"cell_type": "code",
|
1607 |
+
"execution_count": null,
|
1608 |
+
"metadata": {},
|
1609 |
+
"outputs": [],
|
1610 |
+
"source": []
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"cell_type": "code",
|
1614 |
+
"execution_count": null,
|
1615 |
+
"metadata": {},
|
1616 |
+
"outputs": [],
|
1617 |
+
"source": []
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"cell_type": "code",
|
1621 |
+
"execution_count": null,
|
1622 |
+
"metadata": {},
|
1623 |
+
"outputs": [],
|
1624 |
+
"source": []
|
1625 |
+
}
|
1626 |
+
],
|
1627 |
+
"metadata": {
|
1628 |
+
"kernelspec": {
|
1629 |
+
"display_name": "base",
|
1630 |
+
"language": "python",
|
1631 |
+
"name": "python3"
|
1632 |
+
},
|
1633 |
+
"language_info": {
|
1634 |
+
"codemirror_mode": {
|
1635 |
+
"name": "ipython",
|
1636 |
+
"version": 3
|
1637 |
+
},
|
1638 |
+
"file_extension": ".py",
|
1639 |
+
"mimetype": "text/x-python",
|
1640 |
+
"name": "python",
|
1641 |
+
"nbconvert_exporter": "python",
|
1642 |
+
"pygments_lexer": "ipython3",
|
1643 |
+
"version": "3.10.4"
|
1644 |
+
},
|
1645 |
+
"orig_nbformat": 4,
|
1646 |
+
"vscode": {
|
1647 |
+
"interpreter": {
|
1648 |
+
"hash": "3d597f4c481aa0f25dceb95d2a0067e73c0966dcbd003d741d821a7208527ecf"
|
1649 |
+
}
|
1650 |
+
}
|
1651 |
+
},
|
1652 |
+
"nbformat": 4,
|
1653 |
+
"nbformat_minor": 2
|
1654 |
+
}
|