Spaces:
Runtime error
Runtime error
File size: 5,139 Bytes
7f59780 f20be77 7f59780 a58e064 ebdf946 7f59780 a0e100e 7f59780 e50954a 7f59780 0e3afa0 bc3a9b9 7f59780 a0e100e 7f59780 a0e100e 7f59780 6b79e13 bc3a9b9 a0e100e 7f59780 db1ed1d 7f59780 6b79e13 bc3a9b9 a0e100e 7f59780 db1ed1d 7f59780 6b79e13 bc3a9b9 a0e100e 7f59780 db1ed1d 7f59780 6b79e13 44a5e23 a0e100e 7f59780 db1ed1d 7f59780 d17dc3d 7f59780 dd85d3d 7f59780 a2e617a 7f59780 6b79e13 7f59780 6b79e13 7f59780 6b79e13 7f59780 970fb7e 7f59780 5d1ae40 7f59780 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import requests
import gradio as gr
import numpy as np
import cv2
import torch
import torch.nn as nn
from PIL import Image
from torchvision import transforms
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.data import create_transform
from focalnet import FocalNet, build_transforms, build_transforms4display
# Download human-readable labels for ImageNet.
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")
'''
build model
'''
model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], use_layerscale=True, use_postln=True)
# url = 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_iso_16.pth'
# checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
checkpoint = torch.load("./focalnet_base_iso_16.pth", map_location="cpu")
model.load_state_dict(checkpoint["model"])
model.eval()
'''
build data transform
'''
eval_transforms = build_transforms(224, center_crop=True)
display_transforms = build_transforms4display(224, center_crop=True)
'''
build upsampler
'''
# upsampler = nn.Upsample(scale_factor=16, mode='bilinear')
'''
borrow code from here: https://github.com/jacobgil/pytorch-grad-cam/blob/master/pytorch_grad_cam/utils/image.py
'''
def show_cam_on_image(img: np.ndarray,
mask: np.ndarray,
use_rgb: bool = False,
colormap: int = cv2.COLORMAP_JET) -> np.ndarray:
""" This function overlays the cam mask on the image as an heatmap.
By default the heatmap is in BGR format.
:param img: The base image in RGB or BGR format.
:param mask: The cam mask.
:param use_rgb: Whether to use an RGB or BGR heatmap, this should be set to True if 'img' is in RGB format.
:param colormap: The OpenCV colormap to be used.
:returns: The default image with the cam overlay.
"""
heatmap = cv2.applyColorMap(np.uint8(255 * mask), colormap)
if use_rgb:
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
heatmap = np.float32(heatmap) / 255
if np.max(img) > 1:
raise Exception(
"The input image should np.float32 in the range [0, 1]")
cam = 0.5*heatmap + 0.5*img
# cam = heatmap
# cam = cam / np.max(cam)
return np.uint8(255 * cam)
def classify_image(inp):
img_t = eval_transforms(inp)
img_d = display_transforms(inp).permute(1, 2, 0).numpy()
print(img_d.min(), img_d.max())
prediction = model(img_t.unsqueeze(0)).softmax(-1).flatten()
modulator = model.layers[0].blocks[11].modulation.modulator.norm(2, 1, keepdim=True)
modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
modulator = modulator.squeeze(1).detach().permute(1, 2, 0).numpy()
modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
cam0 = show_cam_on_image(img_d, modulator, use_rgb=True)
modulator = model.layers[0].blocks[8].modulation.modulator.norm(2, 1, keepdim=True)
modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
modulator = modulator.squeeze(1).detach().permute(1, 2, 0).numpy()
modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
cam1 = show_cam_on_image(img_d, modulator, use_rgb=True)
modulator = model.layers[0].blocks[5].modulation.modulator.norm(2, 1, keepdim=True)
modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
modulator = modulator.squeeze(1).detach().permute(1, 2, 0).numpy()
modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
cam2 = show_cam_on_image(img_d, modulator, use_rgb=True)
modulator = model.layers[0].blocks[2].modulation.modulator.norm(2, 1, keepdim=True)
modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
modulator = modulator.squeeze(1).detach().permute(1, 2, 0).numpy()
modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
cam3 = show_cam_on_image(img_d, modulator, use_rgb=True)
return {labels[i]: float(prediction[i]) for i in range(1000)}, Image.fromarray(cam0), Image.fromarray(cam1), Image.fromarray(cam2), Image.fromarray(cam3), Image.fromarray(np.uint8(255 * img_d))
image = gr.inputs.Image()
label = gr.outputs.Label(num_top_classes=3)
gr.Interface(
description="Image classification and visualizations with FocalNet (https://github.com/microsoft/FocalNet)",
fn=classify_image,
inputs=image,
outputs=[
label,
gr.outputs.Image(
type="pil",
label="Modulator at layer 12"),
gr.outputs.Image(
type="pil",
label="Modulator at layer 9"),
gr.outputs.Image(
type="pil",
label="Modulator at layer 6"),
gr.outputs.Image(
type="pil",
label="Modulator at layer 3"),
gr.outputs.Image(
type="pil",
label="Cropped Input"),
],
examples=[["./donut.png"], ["./horses.png"], ["./pencil.png"]],
).launch()
|