Spaces:
Runtime error
Runtime error
jwyang
commited on
Commit
•
7f59780
1
Parent(s):
590ef1e
add application
Browse files- app.py +123 -0
- focalnet.py +634 -0
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from PIL import Image
|
8 |
+
from torchvision import transforms
|
9 |
+
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
10 |
+
from timm.data import create_transform
|
11 |
+
from timm.data.transforms import _pil_interp
|
12 |
+
from focalnet import FocalNet, build_transforms, build_transforms4display
|
13 |
+
|
14 |
+
# Download human-readable labels for ImageNet.
|
15 |
+
response = requests.get("https://git.io/JJkYN")
|
16 |
+
labels = response.text.split("\n")
|
17 |
+
|
18 |
+
'''
|
19 |
+
build model
|
20 |
+
'''
|
21 |
+
model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], use_layerscale=True, use_postln=True)
|
22 |
+
url = 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_iso_16.pth'
|
23 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
|
24 |
+
model.load_state_dict(checkpoint["model"])
|
25 |
+
model = model.cuda(); model.eval()
|
26 |
+
|
27 |
+
'''
|
28 |
+
build data transform
|
29 |
+
'''
|
30 |
+
eval_transforms = build_transforms(224, center_crop=False)
|
31 |
+
display_transforms = build_transforms4display(224, center_crop=False)
|
32 |
+
|
33 |
+
'''
|
34 |
+
build upsampler
|
35 |
+
'''
|
36 |
+
# upsampler = nn.Upsample(scale_factor=16, mode='bilinear')
|
37 |
+
|
38 |
+
'''
|
39 |
+
borrow code from here: https://github.com/jacobgil/pytorch-grad-cam/blob/master/pytorch_grad_cam/utils/image.py
|
40 |
+
'''
|
41 |
+
def show_cam_on_image(img: np.ndarray,
|
42 |
+
mask: np.ndarray,
|
43 |
+
use_rgb: bool = False,
|
44 |
+
colormap: int = cv2.COLORMAP_JET) -> np.ndarray:
|
45 |
+
""" This function overlays the cam mask on the image as an heatmap.
|
46 |
+
By default the heatmap is in BGR format.
|
47 |
+
:param img: The base image in RGB or BGR format.
|
48 |
+
:param mask: The cam mask.
|
49 |
+
:param use_rgb: Whether to use an RGB or BGR heatmap, this should be set to True if 'img' is in RGB format.
|
50 |
+
:param colormap: The OpenCV colormap to be used.
|
51 |
+
:returns: The default image with the cam overlay.
|
52 |
+
"""
|
53 |
+
heatmap = cv2.applyColorMap(np.uint8(255 * mask), colormap)
|
54 |
+
if use_rgb:
|
55 |
+
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
|
56 |
+
heatmap = np.float32(heatmap) / 255
|
57 |
+
|
58 |
+
if np.max(img) > 1:
|
59 |
+
raise Exception(
|
60 |
+
"The input image should np.float32 in the range [0, 1]")
|
61 |
+
|
62 |
+
cam = 0.7*heatmap + 0.3*img
|
63 |
+
# cam = cam / np.max(cam)
|
64 |
+
return np.uint8(255 * cam)
|
65 |
+
|
66 |
+
def classify_image(inp):
|
67 |
+
|
68 |
+
img_t = eval_transforms(inp)
|
69 |
+
img_d = display_transforms(inp).permute(1, 2, 0).cpu().numpy()
|
70 |
+
print(img_d.min(), img_d.max())
|
71 |
+
|
72 |
+
prediction = model(img_t.unsqueeze(0).cuda()).softmax(-1).flatten()
|
73 |
+
|
74 |
+
modulator = model.layers[0].blocks[2].modulation.modulator.norm(2, 1, keepdim=True)
|
75 |
+
modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
|
76 |
+
modulator = modulator.squeeze(1).detach().permute(1, 2, 0).cpu().numpy()
|
77 |
+
modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
|
78 |
+
cam0 = show_cam_on_image(img_d, modulator, use_rgb=True)
|
79 |
+
|
80 |
+
modulator = model.layers[0].blocks[5].modulation.modulator.norm(2, 1, keepdim=True)
|
81 |
+
modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
|
82 |
+
modulator = modulator.squeeze(1).detach().permute(1, 2, 0).cpu().numpy()
|
83 |
+
modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
|
84 |
+
cam1 = show_cam_on_image(img_d, modulator, use_rgb=True)
|
85 |
+
|
86 |
+
modulator = model.layers[0].blocks[8].modulation.modulator.norm(2, 1, keepdim=True)
|
87 |
+
modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
|
88 |
+
modulator = modulator.squeeze(1).detach().permute(1, 2, 0).cpu().numpy()
|
89 |
+
modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
|
90 |
+
cam2 = show_cam_on_image(img_d, modulator, use_rgb=True)
|
91 |
+
|
92 |
+
modulator = model.layers[0].blocks[11].modulation.modulator.norm(2, 1, keepdim=True)
|
93 |
+
modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
|
94 |
+
modulator = modulator.squeeze(1).detach().permute(1, 2, 0).cpu().numpy()
|
95 |
+
modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
|
96 |
+
cam3 = show_cam_on_image(img_d, modulator, use_rgb=True)
|
97 |
+
|
98 |
+
return Image.fromarray(cam0), Image.fromarray(cam1), Image.fromarray(cam2), Image.fromarray(cam3), {labels[i]: float(prediction[i]) for i in range(1000)}
|
99 |
+
|
100 |
+
|
101 |
+
image = gr.inputs.Image()
|
102 |
+
label = gr.outputs.Label(num_top_classes=3)
|
103 |
+
|
104 |
+
gr.Interface(
|
105 |
+
fn=classify_image,
|
106 |
+
inputs=image,
|
107 |
+
outputs=[
|
108 |
+
gr.outputs.Image(
|
109 |
+
type="pil",
|
110 |
+
label="Modulator at layer 3"),
|
111 |
+
gr.outputs.Image(
|
112 |
+
type="pil",
|
113 |
+
label="Modulator at layer 6"),
|
114 |
+
gr.outputs.Image(
|
115 |
+
type="pil",
|
116 |
+
label="Modulator at layer 9"),
|
117 |
+
gr.outputs.Image(
|
118 |
+
type="pil",
|
119 |
+
label="Modulator at layer 12"),
|
120 |
+
label,
|
121 |
+
],
|
122 |
+
# examples=[["images/aiko.jpg"], ["images/pencils.jpg"], ["images/donut.png"]],
|
123 |
+
).launch()
|
focalnet.py
ADDED
@@ -0,0 +1,634 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# FocalNets -- Focal Modulation Networks
|
3 |
+
# Copyright (c) 2022 Microsoft
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# Written by Jianwei Yang (jianwyan@microsoft.com)
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.utils.checkpoint as checkpoint
|
12 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
13 |
+
from timm.models.registry import register_model
|
14 |
+
|
15 |
+
from torchvision import transforms
|
16 |
+
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
17 |
+
from timm.data import create_transform
|
18 |
+
from timm.data.transforms import _pil_interp
|
19 |
+
|
20 |
+
class Mlp(nn.Module):
|
21 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
22 |
+
super().__init__()
|
23 |
+
out_features = out_features or in_features
|
24 |
+
hidden_features = hidden_features or in_features
|
25 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
26 |
+
self.act = act_layer()
|
27 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
28 |
+
self.drop = nn.Dropout(drop)
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
x = self.fc1(x)
|
32 |
+
x = self.act(x)
|
33 |
+
x = self.drop(x)
|
34 |
+
x = self.fc2(x)
|
35 |
+
x = self.drop(x)
|
36 |
+
return x
|
37 |
+
|
38 |
+
class FocalModulation(nn.Module):
|
39 |
+
def __init__(self, dim, focal_window, focal_level, focal_factor=2, bias=True, proj_drop=0., use_postln=False):
|
40 |
+
super().__init__()
|
41 |
+
|
42 |
+
self.dim = dim
|
43 |
+
self.focal_window = focal_window
|
44 |
+
self.focal_level = focal_level
|
45 |
+
self.focal_factor = focal_factor
|
46 |
+
self.use_postln = use_postln
|
47 |
+
|
48 |
+
self.f = nn.Linear(dim, 2*dim + (self.focal_level+1), bias=bias)
|
49 |
+
self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias)
|
50 |
+
|
51 |
+
self.act = nn.GELU()
|
52 |
+
self.proj = nn.Linear(dim, dim)
|
53 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
54 |
+
self.focal_layers = nn.ModuleList()
|
55 |
+
|
56 |
+
self.kernel_sizes = []
|
57 |
+
for k in range(self.focal_level):
|
58 |
+
kernel_size = self.focal_factor*k + self.focal_window
|
59 |
+
self.focal_layers.append(
|
60 |
+
nn.Sequential(
|
61 |
+
nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1,
|
62 |
+
groups=dim, padding=kernel_size//2, bias=False),
|
63 |
+
nn.GELU(),
|
64 |
+
)
|
65 |
+
)
|
66 |
+
self.kernel_sizes.append(kernel_size)
|
67 |
+
if self.use_postln:
|
68 |
+
self.ln = nn.LayerNorm(dim)
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
"""
|
72 |
+
Args:
|
73 |
+
x: input features with shape of (B, H, W, C)
|
74 |
+
"""
|
75 |
+
C = x.shape[-1]
|
76 |
+
|
77 |
+
# pre linear projection
|
78 |
+
x = self.f(x).permute(0, 3, 1, 2).contiguous()
|
79 |
+
q, ctx, self.gates = torch.split(x, (C, C, self.focal_level+1), 1)
|
80 |
+
|
81 |
+
# context aggreation
|
82 |
+
ctx_all = 0
|
83 |
+
for l in range(self.focal_level):
|
84 |
+
ctx = self.focal_layers[l](ctx)
|
85 |
+
ctx_all = ctx_all + ctx*self.gates[:, l:l+1]
|
86 |
+
ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
|
87 |
+
ctx_all = ctx_all + ctx_global*self.gates[:,self.focal_level:]
|
88 |
+
|
89 |
+
# focal modulation
|
90 |
+
self.modulator = self.h(ctx_all)
|
91 |
+
x_out = q*self.modulator
|
92 |
+
x_out = x_out.permute(0, 2, 3, 1).contiguous()
|
93 |
+
if self.use_postln:
|
94 |
+
x_out = self.ln(x_out)
|
95 |
+
|
96 |
+
# post linear porjection
|
97 |
+
x_out = self.proj(x_out)
|
98 |
+
x_out = self.proj_drop(x_out)
|
99 |
+
return x_out
|
100 |
+
|
101 |
+
def extra_repr(self) -> str:
|
102 |
+
return f'dim={self.dim}'
|
103 |
+
|
104 |
+
def flops(self, N):
|
105 |
+
# calculate flops for 1 window with token length of N
|
106 |
+
flops = 0
|
107 |
+
|
108 |
+
flops += N * self.dim * (self.dim * 2 + (self.focal_level+1))
|
109 |
+
|
110 |
+
# focal convolution
|
111 |
+
for k in range(self.focal_level):
|
112 |
+
flops += N * (self.kernel_sizes[k]**2+1) * self.dim
|
113 |
+
|
114 |
+
# global gating
|
115 |
+
flops += N * 1 * self.dim
|
116 |
+
|
117 |
+
# self.linear
|
118 |
+
flops += N * self.dim * (self.dim + 1)
|
119 |
+
|
120 |
+
# x = self.proj(x)
|
121 |
+
flops += N * self.dim * self.dim
|
122 |
+
return flops
|
123 |
+
|
124 |
+
class FocalNetBlock(nn.Module):
|
125 |
+
r""" Focal Modulation Network Block.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
dim (int): Number of input channels.
|
129 |
+
input_resolution (tuple[int]): Input resulotion.
|
130 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
131 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
132 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
133 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
134 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
135 |
+
focal_level (int): Number of focal levels.
|
136 |
+
focal_window (int): Focal window size at first focal level
|
137 |
+
use_layerscale (bool): Whether use layerscale
|
138 |
+
layerscale_value (float): Initial layerscale value
|
139 |
+
use_postln (bool): Whether use layernorm after modulation
|
140 |
+
"""
|
141 |
+
|
142 |
+
def __init__(self, dim, input_resolution, mlp_ratio=4., drop=0., drop_path=0.,
|
143 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
144 |
+
focal_level=1, focal_window=3,
|
145 |
+
use_layerscale=False, layerscale_value=1e-4,
|
146 |
+
use_postln=False):
|
147 |
+
super().__init__()
|
148 |
+
self.dim = dim
|
149 |
+
self.input_resolution = input_resolution
|
150 |
+
self.mlp_ratio = mlp_ratio
|
151 |
+
|
152 |
+
self.focal_window = focal_window
|
153 |
+
self.focal_level = focal_level
|
154 |
+
|
155 |
+
self.norm1 = norm_layer(dim)
|
156 |
+
self.modulation = FocalModulation(dim, proj_drop=drop, focal_window=focal_window, focal_level=self.focal_level, use_postln=use_postln)
|
157 |
+
|
158 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
159 |
+
self.norm2 = norm_layer(dim)
|
160 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
161 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
162 |
+
|
163 |
+
self.gamma_1 = 1.0
|
164 |
+
self.gamma_2 = 1.0
|
165 |
+
if use_layerscale:
|
166 |
+
self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
|
167 |
+
self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
|
168 |
+
|
169 |
+
self.H = None
|
170 |
+
self.W = None
|
171 |
+
|
172 |
+
def forward(self, x):
|
173 |
+
H, W = self.H, self.W
|
174 |
+
B, L, C = x.shape
|
175 |
+
shortcut = x
|
176 |
+
|
177 |
+
# Focal Modulation
|
178 |
+
x = self.norm1(x)
|
179 |
+
x = x.view(B, H, W, C)
|
180 |
+
x = self.modulation(x).view(B, H * W, C)
|
181 |
+
|
182 |
+
# FFN
|
183 |
+
x = shortcut + self.drop_path(self.gamma_1 * x)
|
184 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
185 |
+
|
186 |
+
return x
|
187 |
+
|
188 |
+
def extra_repr(self) -> str:
|
189 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, " \
|
190 |
+
f"mlp_ratio={self.mlp_ratio}"
|
191 |
+
|
192 |
+
def flops(self):
|
193 |
+
flops = 0
|
194 |
+
H, W = self.input_resolution
|
195 |
+
# norm1
|
196 |
+
flops += self.dim * H * W
|
197 |
+
|
198 |
+
# W-MSA/SW-MSA
|
199 |
+
flops += self.modulation.flops(H*W)
|
200 |
+
|
201 |
+
# mlp
|
202 |
+
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
|
203 |
+
# norm2
|
204 |
+
flops += self.dim * H * W
|
205 |
+
return flops
|
206 |
+
|
207 |
+
class BasicLayer(nn.Module):
|
208 |
+
""" A basic Focal Transformer layer for one stage.
|
209 |
+
|
210 |
+
Args:
|
211 |
+
dim (int): Number of input channels.
|
212 |
+
input_resolution (tuple[int]): Input resolution.
|
213 |
+
depth (int): Number of blocks.
|
214 |
+
window_size (int): Local window size.
|
215 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
216 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
217 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
218 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
219 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
220 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
221 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
222 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
223 |
+
focal_level (int): Number of focal levels
|
224 |
+
focal_window (int): Focal window size at first focal level
|
225 |
+
use_layerscale (bool): Whether use layerscale
|
226 |
+
layerscale_value (float): Initial layerscale value
|
227 |
+
use_postln (bool): Whether use layernorm after modulation
|
228 |
+
"""
|
229 |
+
|
230 |
+
def __init__(self, dim, out_dim, input_resolution, depth,
|
231 |
+
mlp_ratio=4., drop=0., drop_path=0., norm_layer=nn.LayerNorm,
|
232 |
+
downsample=None, use_checkpoint=False,
|
233 |
+
focal_level=1, focal_window=1,
|
234 |
+
use_conv_embed=False,
|
235 |
+
use_layerscale=False, layerscale_value=1e-4, use_postln=False):
|
236 |
+
|
237 |
+
super().__init__()
|
238 |
+
self.dim = dim
|
239 |
+
self.input_resolution = input_resolution
|
240 |
+
self.depth = depth
|
241 |
+
self.use_checkpoint = use_checkpoint
|
242 |
+
|
243 |
+
# build blocks
|
244 |
+
self.blocks = nn.ModuleList([
|
245 |
+
FocalNetBlock(
|
246 |
+
dim=dim,
|
247 |
+
input_resolution=input_resolution,
|
248 |
+
mlp_ratio=mlp_ratio,
|
249 |
+
drop=drop,
|
250 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
251 |
+
norm_layer=norm_layer,
|
252 |
+
focal_level=focal_level,
|
253 |
+
focal_window=focal_window,
|
254 |
+
use_layerscale=use_layerscale,
|
255 |
+
layerscale_value=layerscale_value,
|
256 |
+
use_postln=use_postln,
|
257 |
+
)
|
258 |
+
for i in range(depth)])
|
259 |
+
|
260 |
+
if downsample is not None:
|
261 |
+
self.downsample = downsample(
|
262 |
+
img_size=input_resolution,
|
263 |
+
patch_size=2,
|
264 |
+
in_chans=dim,
|
265 |
+
embed_dim=out_dim,
|
266 |
+
use_conv_embed=use_conv_embed,
|
267 |
+
norm_layer=norm_layer,
|
268 |
+
is_stem=False
|
269 |
+
)
|
270 |
+
else:
|
271 |
+
self.downsample = None
|
272 |
+
|
273 |
+
def forward(self, x, H, W):
|
274 |
+
for blk in self.blocks:
|
275 |
+
blk.H, blk.W = H, W
|
276 |
+
if self.use_checkpoint:
|
277 |
+
x = checkpoint.checkpoint(blk, x)
|
278 |
+
else:
|
279 |
+
x = blk(x)
|
280 |
+
|
281 |
+
if self.downsample is not None:
|
282 |
+
x = x.transpose(1, 2).reshape(x.shape[0], -1, H, W)
|
283 |
+
x, Ho, Wo = self.downsample(x)
|
284 |
+
else:
|
285 |
+
Ho, Wo = H, W
|
286 |
+
return x, Ho, Wo
|
287 |
+
|
288 |
+
def extra_repr(self) -> str:
|
289 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
290 |
+
|
291 |
+
def flops(self):
|
292 |
+
flops = 0
|
293 |
+
for blk in self.blocks:
|
294 |
+
flops += blk.flops()
|
295 |
+
if self.downsample is not None:
|
296 |
+
flops += self.downsample.flops()
|
297 |
+
return flops
|
298 |
+
|
299 |
+
class PatchEmbed(nn.Module):
|
300 |
+
r""" Image to Patch Embedding
|
301 |
+
|
302 |
+
Args:
|
303 |
+
img_size (int): Image size. Default: 224.
|
304 |
+
patch_size (int): Patch token size. Default: 4.
|
305 |
+
in_chans (int): Number of input image channels. Default: 3.
|
306 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
307 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
308 |
+
"""
|
309 |
+
|
310 |
+
def __init__(self, img_size=(224, 224), patch_size=4, in_chans=3, embed_dim=96, use_conv_embed=False, norm_layer=None, is_stem=False):
|
311 |
+
super().__init__()
|
312 |
+
patch_size = to_2tuple(patch_size)
|
313 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
314 |
+
self.img_size = img_size
|
315 |
+
self.patch_size = patch_size
|
316 |
+
self.patches_resolution = patches_resolution
|
317 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
318 |
+
|
319 |
+
self.in_chans = in_chans
|
320 |
+
self.embed_dim = embed_dim
|
321 |
+
|
322 |
+
if use_conv_embed:
|
323 |
+
# if we choose to use conv embedding, then we treat the stem and non-stem differently
|
324 |
+
if is_stem:
|
325 |
+
kernel_size = 7; padding = 2; stride = 4
|
326 |
+
else:
|
327 |
+
kernel_size = 3; padding = 1; stride = 2
|
328 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
|
329 |
+
else:
|
330 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
331 |
+
|
332 |
+
if norm_layer is not None:
|
333 |
+
self.norm = norm_layer(embed_dim)
|
334 |
+
else:
|
335 |
+
self.norm = None
|
336 |
+
|
337 |
+
def forward(self, x):
|
338 |
+
B, C, H, W = x.shape
|
339 |
+
|
340 |
+
x = self.proj(x)
|
341 |
+
H, W = x.shape[2:]
|
342 |
+
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
|
343 |
+
if self.norm is not None:
|
344 |
+
x = self.norm(x)
|
345 |
+
return x, H, W
|
346 |
+
|
347 |
+
def flops(self):
|
348 |
+
Ho, Wo = self.patches_resolution
|
349 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
350 |
+
if self.norm is not None:
|
351 |
+
flops += Ho * Wo * self.embed_dim
|
352 |
+
return flops
|
353 |
+
|
354 |
+
class FocalNet(nn.Module):
|
355 |
+
r""" Focal Modulation Networks (FocalNets)
|
356 |
+
|
357 |
+
Args:
|
358 |
+
img_size (int | tuple(int)): Input image size. Default 224
|
359 |
+
patch_size (int | tuple(int)): Patch size. Default: 4
|
360 |
+
in_chans (int): Number of input image channels. Default: 3
|
361 |
+
num_classes (int): Number of classes for classification head. Default: 1000
|
362 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
363 |
+
depths (tuple(int)): Depth of each Focal Transformer layer.
|
364 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
365 |
+
drop_rate (float): Dropout rate. Default: 0
|
366 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
367 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
368 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
369 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
370 |
+
focal_levels (list): How many focal levels at all stages. Note that this excludes the finest-grain level. Default: [1, 1, 1, 1]
|
371 |
+
focal_windows (list): The focal window size at all stages. Default: [7, 5, 3, 1]
|
372 |
+
use_conv_embed (bool): Whether use convolutional embedding. We noted that using convolutional embedding usually improve the performance, but we do not use it by default. Default: False
|
373 |
+
use_layerscale (bool): Whether use layerscale proposed in CaiT. Default: False
|
374 |
+
layerscale_value (float): Value for layer scale. Default: 1e-4
|
375 |
+
use_postln (bool): Whether use layernorm after modulation (it helps stablize training of large models)
|
376 |
+
"""
|
377 |
+
def __init__(self,
|
378 |
+
img_size=224,
|
379 |
+
patch_size=4,
|
380 |
+
in_chans=3,
|
381 |
+
num_classes=1000,
|
382 |
+
embed_dim=96,
|
383 |
+
depths=[2, 2, 6, 2],
|
384 |
+
mlp_ratio=4.,
|
385 |
+
drop_rate=0.,
|
386 |
+
drop_path_rate=0.1,
|
387 |
+
norm_layer=nn.LayerNorm,
|
388 |
+
patch_norm=True,
|
389 |
+
use_checkpoint=False,
|
390 |
+
focal_levels=[2, 2, 2, 2],
|
391 |
+
focal_windows=[3, 3, 3, 3],
|
392 |
+
use_conv_embed=False,
|
393 |
+
use_layerscale=False,
|
394 |
+
layerscale_value=1e-4,
|
395 |
+
use_postln=False,
|
396 |
+
**kwargs):
|
397 |
+
super().__init__()
|
398 |
+
|
399 |
+
self.num_layers = len(depths)
|
400 |
+
embed_dim = [embed_dim * (2 ** i) for i in range(self.num_layers)]
|
401 |
+
|
402 |
+
self.num_classes = num_classes
|
403 |
+
self.embed_dim = embed_dim
|
404 |
+
self.patch_norm = patch_norm
|
405 |
+
self.num_features = embed_dim[-1]
|
406 |
+
self.mlp_ratio = mlp_ratio
|
407 |
+
|
408 |
+
# split image into patches using either non-overlapped embedding or overlapped embedding
|
409 |
+
self.patch_embed = PatchEmbed(
|
410 |
+
img_size=to_2tuple(img_size),
|
411 |
+
patch_size=patch_size,
|
412 |
+
in_chans=in_chans,
|
413 |
+
embed_dim=embed_dim[0],
|
414 |
+
use_conv_embed=use_conv_embed,
|
415 |
+
norm_layer=norm_layer if self.patch_norm else None,
|
416 |
+
is_stem=True)
|
417 |
+
|
418 |
+
num_patches = self.patch_embed.num_patches
|
419 |
+
patches_resolution = self.patch_embed.patches_resolution
|
420 |
+
self.patches_resolution = patches_resolution
|
421 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
422 |
+
|
423 |
+
# stochastic depth
|
424 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
425 |
+
|
426 |
+
# build layers
|
427 |
+
self.layers = nn.ModuleList()
|
428 |
+
for i_layer in range(self.num_layers):
|
429 |
+
layer = BasicLayer(dim=embed_dim[i_layer],
|
430 |
+
out_dim=embed_dim[i_layer+1] if (i_layer < self.num_layers - 1) else None,
|
431 |
+
input_resolution=(patches_resolution[0] // (2 ** i_layer),
|
432 |
+
patches_resolution[1] // (2 ** i_layer)),
|
433 |
+
depth=depths[i_layer],
|
434 |
+
mlp_ratio=self.mlp_ratio,
|
435 |
+
drop=drop_rate,
|
436 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
437 |
+
norm_layer=norm_layer,
|
438 |
+
downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None,
|
439 |
+
focal_level=focal_levels[i_layer],
|
440 |
+
focal_window=focal_windows[i_layer],
|
441 |
+
use_conv_embed=use_conv_embed,
|
442 |
+
use_checkpoint=use_checkpoint,
|
443 |
+
use_layerscale=use_layerscale,
|
444 |
+
layerscale_value=layerscale_value,
|
445 |
+
use_postln=use_postln,
|
446 |
+
)
|
447 |
+
self.layers.append(layer)
|
448 |
+
|
449 |
+
self.norm = norm_layer(self.num_features)
|
450 |
+
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
451 |
+
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
452 |
+
|
453 |
+
self.apply(self._init_weights)
|
454 |
+
|
455 |
+
def _init_weights(self, m):
|
456 |
+
if isinstance(m, nn.Linear):
|
457 |
+
trunc_normal_(m.weight, std=.02)
|
458 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
459 |
+
nn.init.constant_(m.bias, 0)
|
460 |
+
elif isinstance(m, nn.LayerNorm):
|
461 |
+
nn.init.constant_(m.bias, 0)
|
462 |
+
nn.init.constant_(m.weight, 1.0)
|
463 |
+
|
464 |
+
@torch.jit.ignore
|
465 |
+
def no_weight_decay(self):
|
466 |
+
return {''}
|
467 |
+
|
468 |
+
@torch.jit.ignore
|
469 |
+
def no_weight_decay_keywords(self):
|
470 |
+
return {''}
|
471 |
+
|
472 |
+
def forward_features(self, x):
|
473 |
+
x, H, W = self.patch_embed(x)
|
474 |
+
x = self.pos_drop(x)
|
475 |
+
|
476 |
+
for layer in self.layers:
|
477 |
+
x, H, W = layer(x, H, W)
|
478 |
+
x = self.norm(x) # B L C
|
479 |
+
x = self.avgpool(x.transpose(1, 2)) # B C 1
|
480 |
+
x = torch.flatten(x, 1)
|
481 |
+
return x
|
482 |
+
|
483 |
+
def forward(self, x):
|
484 |
+
x = self.forward_features(x)
|
485 |
+
x = self.head(x)
|
486 |
+
return x
|
487 |
+
|
488 |
+
def flops(self):
|
489 |
+
flops = 0
|
490 |
+
flops += self.patch_embed.flops()
|
491 |
+
for i, layer in enumerate(self.layers):
|
492 |
+
flops += layer.flops()
|
493 |
+
flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
|
494 |
+
flops += self.num_features * self.num_classes
|
495 |
+
return flops
|
496 |
+
|
497 |
+
def build_transforms(img_size, center_crop=False):
|
498 |
+
t = [transforms.ToPILImage()]
|
499 |
+
if center_crop:
|
500 |
+
size = int((256 / 224) * img_size)
|
501 |
+
t.append(
|
502 |
+
transforms.Resize(size, interpolation=_pil_interp('bicubic'))
|
503 |
+
)
|
504 |
+
t.append(
|
505 |
+
transforms.CenterCrop(img_size)
|
506 |
+
)
|
507 |
+
else:
|
508 |
+
t.append(
|
509 |
+
transforms.Resize(img_size, interpolation=_pil_interp('bicubic'))
|
510 |
+
)
|
511 |
+
t.append(transforms.ToTensor())
|
512 |
+
t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
|
513 |
+
return transforms.Compose(t)
|
514 |
+
|
515 |
+
def build_transforms4display(img_size, center_crop=False):
|
516 |
+
t = [transforms.ToPILImage()]
|
517 |
+
if center_crop:
|
518 |
+
size = int((256 / 224) * img_size)
|
519 |
+
t.append(
|
520 |
+
transforms.Resize(size, interpolation=_pil_interp('bicubic'))
|
521 |
+
)
|
522 |
+
t.append(
|
523 |
+
transforms.CenterCrop(img_size)
|
524 |
+
)
|
525 |
+
else:
|
526 |
+
t.append(
|
527 |
+
transforms.Resize(img_size, interpolation=_pil_interp('bicubic'))
|
528 |
+
)
|
529 |
+
t.append(transforms.ToTensor())
|
530 |
+
return transforms.Compose(t)
|
531 |
+
|
532 |
+
model_urls = {
|
533 |
+
"focalnet_tiny_srf": "",
|
534 |
+
"focalnet_small_srf": "",
|
535 |
+
"focalnet_base_srf": "",
|
536 |
+
"focalnet_tiny_lrf": "",
|
537 |
+
"focalnet_small_lrf": "",
|
538 |
+
"focalnet_base_lrf": "",
|
539 |
+
}
|
540 |
+
|
541 |
+
@register_model
|
542 |
+
def focalnet_tiny_srf(pretrained=False, **kwargs):
|
543 |
+
model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, **kwargs)
|
544 |
+
if pretrained:
|
545 |
+
url = model_urls['focalnet_tiny_srf']
|
546 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
|
547 |
+
model.load_state_dict(checkpoint["model"])
|
548 |
+
return model
|
549 |
+
|
550 |
+
@register_model
|
551 |
+
def focalnet_small_srf(pretrained=False, **kwargs):
|
552 |
+
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, **kwargs)
|
553 |
+
if pretrained:
|
554 |
+
url = model_urls['focalnet_small_srf']
|
555 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
|
556 |
+
model.load_state_dict(checkpoint["model"])
|
557 |
+
return model
|
558 |
+
|
559 |
+
@register_model
|
560 |
+
def focalnet_base_srf(pretrained=False, **kwargs):
|
561 |
+
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, **kwargs)
|
562 |
+
if pretrained:
|
563 |
+
url = model_urls['focalnet_base_srf']
|
564 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
|
565 |
+
model.load_state_dict(checkpoint["model"])
|
566 |
+
return model
|
567 |
+
|
568 |
+
@register_model
|
569 |
+
def focalnet_tiny_lrf(pretrained=False, **kwargs):
|
570 |
+
model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs)
|
571 |
+
if pretrained:
|
572 |
+
url = model_urls['focalnet_tiny_lrf']
|
573 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
|
574 |
+
model.load_state_dict(checkpoint["model"])
|
575 |
+
return model
|
576 |
+
|
577 |
+
@register_model
|
578 |
+
def focalnet_small_lrf(pretrained=False, **kwargs):
|
579 |
+
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs)
|
580 |
+
if pretrained:
|
581 |
+
url = model_urls['focalnet_small_lrf']
|
582 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
|
583 |
+
model.load_state_dict(checkpoint["model"])
|
584 |
+
return model
|
585 |
+
|
586 |
+
@register_model
|
587 |
+
def focalnet_base_lrf(pretrained=False, **kwargs):
|
588 |
+
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, focal_levels=[3, 3, 3, 3], **kwargs)
|
589 |
+
if pretrained:
|
590 |
+
url = model_urls['focalnet_base_lrf']
|
591 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
|
592 |
+
model.load_state_dict(checkpoint["model"])
|
593 |
+
return model
|
594 |
+
|
595 |
+
@register_model
|
596 |
+
def focalnet_tiny_iso_16(pretrained=False, **kwargs):
|
597 |
+
model = FocalNet(depths=[12], patch_size=16, embed_dim=192, focal_levels=[3], focal_windows=[3], **kwargs)
|
598 |
+
if pretrained:
|
599 |
+
url = model_urls['focalnet_tiny_iso_16']
|
600 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
|
601 |
+
model.load_state_dict(checkpoint["model"])
|
602 |
+
return model
|
603 |
+
|
604 |
+
@register_model
|
605 |
+
def focalnet_small_iso_16(pretrained=False, **kwargs):
|
606 |
+
model = FocalNet(depths=[12], patch_size=16, embed_dim=384, focal_levels=[3], focal_windows=[3], **kwargs)
|
607 |
+
if pretrained:
|
608 |
+
url = model_urls['focalnet_small_iso_16']
|
609 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
|
610 |
+
model.load_state_dict(checkpoint["model"])
|
611 |
+
return model
|
612 |
+
|
613 |
+
@register_model
|
614 |
+
def focalnet_base_iso_16(pretrained=False, **kwargs):
|
615 |
+
model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], focal_windows=[3], use_layerscale=True, use_postln=True, **kwargs)
|
616 |
+
if pretrained:
|
617 |
+
url = model_urls['focalnet_base_iso_16']
|
618 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
|
619 |
+
model.load_state_dict(checkpoint["model"])
|
620 |
+
return model
|
621 |
+
|
622 |
+
if __name__ == '__main__':
|
623 |
+
img_size = 224
|
624 |
+
x = torch.rand(16, 3, img_size, img_size).cuda()
|
625 |
+
# model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96)
|
626 |
+
# model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], focal_windows=[3], focal_factors=[2])
|
627 |
+
model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, focal_levels=[3, 3, 3, 3]).cuda()
|
628 |
+
print(model); model(x)
|
629 |
+
|
630 |
+
flops = model.flops()
|
631 |
+
print(f"number of GFLOPs: {flops / 1e9}")
|
632 |
+
|
633 |
+
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
634 |
+
print(f"number of params: {n_parameters}")
|