File size: 4,915 Bytes
7f59780
 
 
f20be77
7f59780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import requests
import gradio as gr
import numpy as np
import cv2
import torch
import torch.nn as nn
from PIL import Image
from torchvision import transforms
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.data import create_transform
from timm.data.transforms import _pil_interp
from focalnet import FocalNet, build_transforms, build_transforms4display

# Download human-readable labels for ImageNet.
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")

'''
build model
'''
model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], use_layerscale=True, use_postln=True)
url = 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_iso_16.pth'
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
model.load_state_dict(checkpoint["model"])
model = model.cuda(); model.eval()

'''
build data transform
'''
eval_transforms = build_transforms(224, center_crop=False)
display_transforms = build_transforms4display(224, center_crop=False)

'''
build upsampler
'''
# upsampler = nn.Upsample(scale_factor=16, mode='bilinear')

'''
borrow code from here: https://github.com/jacobgil/pytorch-grad-cam/blob/master/pytorch_grad_cam/utils/image.py
'''
def show_cam_on_image(img: np.ndarray,
                      mask: np.ndarray,
                      use_rgb: bool = False,
                      colormap: int = cv2.COLORMAP_JET) -> np.ndarray:
    """ This function overlays the cam mask on the image as an heatmap.
    By default the heatmap is in BGR format.
    :param img: The base image in RGB or BGR format.
    :param mask: The cam mask.
    :param use_rgb: Whether to use an RGB or BGR heatmap, this should be set to True if 'img' is in RGB format.
    :param colormap: The OpenCV colormap to be used.
    :returns: The default image with the cam overlay.
    """
    heatmap = cv2.applyColorMap(np.uint8(255 * mask), colormap)
    if use_rgb:
        heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
    heatmap = np.float32(heatmap) / 255

    if np.max(img) > 1:
        raise Exception(
            "The input image should np.float32 in the range [0, 1]")

    cam = 0.7*heatmap + 0.3*img
    # cam = cam / np.max(cam)
    return np.uint8(255 * cam)

def classify_image(inp):
    
    img_t = eval_transforms(inp) 
    img_d = display_transforms(inp).permute(1, 2, 0).cpu().numpy()
    print(img_d.min(), img_d.max())

    prediction = model(img_t.unsqueeze(0).cuda()).softmax(-1).flatten()

    modulator = model.layers[0].blocks[2].modulation.modulator.norm(2, 1, keepdim=True)
    modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
    modulator = modulator.squeeze(1).detach().permute(1, 2, 0).cpu().numpy()
    modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
    cam0 = show_cam_on_image(img_d, modulator, use_rgb=True)

    modulator = model.layers[0].blocks[5].modulation.modulator.norm(2, 1, keepdim=True)
    modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
    modulator = modulator.squeeze(1).detach().permute(1, 2, 0).cpu().numpy()
    modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
    cam1 = show_cam_on_image(img_d, modulator, use_rgb=True)

    modulator = model.layers[0].blocks[8].modulation.modulator.norm(2, 1, keepdim=True)
    modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
    modulator = modulator.squeeze(1).detach().permute(1, 2, 0).cpu().numpy()
    modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
    cam2 = show_cam_on_image(img_d, modulator, use_rgb=True)

    modulator = model.layers[0].blocks[11].modulation.modulator.norm(2, 1, keepdim=True)
    modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
    modulator = modulator.squeeze(1).detach().permute(1, 2, 0).cpu().numpy()
    modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
    cam3 = show_cam_on_image(img_d, modulator, use_rgb=True)

    return Image.fromarray(cam0), Image.fromarray(cam1), Image.fromarray(cam2), Image.fromarray(cam3), {labels[i]: float(prediction[i]) for i in range(1000)}


image = gr.inputs.Image()
label = gr.outputs.Label(num_top_classes=3)

gr.Interface(
    fn=classify_image,
    inputs=image,
    outputs=[
        gr.outputs.Image(
        type="pil",
        label="Modulator at layer 3"),     
        gr.outputs.Image(
        type="pil",
        label="Modulator at layer 6"),     
        gr.outputs.Image(
        type="pil",
        label="Modulator at layer 9"),     
        gr.outputs.Image(
        type="pil",
        label="Modulator at layer 12"),                        
        label,
    ],
    # examples=[["images/aiko.jpg"], ["images/pencils.jpg"], ["images/donut.png"]],
).launch()