File size: 24,683 Bytes
7f59780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a189a4
7f59780
 
 
 
 
 
5a189a4
7f59780
 
 
 
 
 
 
 
 
 
5a189a4
7f59780
 
 
 
 
 
5a189a4
7f59780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
# --------------------------------------------------------
# FocalNets -- Focal Modulation Networks
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Jianwei Yang (jianwyan@microsoft.com)
# --------------------------------------------------------

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model

from torchvision import transforms
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.data import create_transform

class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)     
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

class FocalModulation(nn.Module):
    def __init__(self, dim, focal_window, focal_level, focal_factor=2, bias=True, proj_drop=0., use_postln=False):
        super().__init__()

        self.dim = dim
        self.focal_window = focal_window
        self.focal_level = focal_level
        self.focal_factor = focal_factor
        self.use_postln = use_postln

        self.f = nn.Linear(dim, 2*dim + (self.focal_level+1), bias=bias)
        self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias)

        self.act = nn.GELU()
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.focal_layers = nn.ModuleList()
                
        self.kernel_sizes = []
        for k in range(self.focal_level):
            kernel_size = self.focal_factor*k + self.focal_window
            self.focal_layers.append(
                nn.Sequential(
                    nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, 
                    groups=dim, padding=kernel_size//2, bias=False),
                    nn.GELU(),
                    )
                )              
            self.kernel_sizes.append(kernel_size)          
        if self.use_postln:
            self.ln = nn.LayerNorm(dim)

    def forward(self, x):
        """
        Args:
            x: input features with shape of (B, H, W, C)
        """
        C = x.shape[-1]

        # pre linear projection
        x = self.f(x).permute(0, 3, 1, 2).contiguous()
        q, ctx, self.gates = torch.split(x, (C, C, self.focal_level+1), 1)
        
        # context aggreation
        ctx_all = 0 
        for l in range(self.focal_level):         
            ctx = self.focal_layers[l](ctx)
            ctx_all = ctx_all + ctx*self.gates[:, l:l+1]
        ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
        ctx_all = ctx_all + ctx_global*self.gates[:,self.focal_level:]

        # focal modulation
        self.modulator = self.h(ctx_all)
        x_out = q*self.modulator
        x_out = x_out.permute(0, 2, 3, 1).contiguous()
        if self.use_postln:
            x_out = self.ln(x_out)
        
        # post linear porjection
        x_out = self.proj(x_out)
        x_out = self.proj_drop(x_out)
        return x_out

    def extra_repr(self) -> str:
        return f'dim={self.dim}'

    def flops(self, N):
        # calculate flops for 1 window with token length of N
        flops = 0

        flops += N * self.dim * (self.dim * 2 + (self.focal_level+1))

        # focal convolution
        for k in range(self.focal_level):
            flops += N * (self.kernel_sizes[k]**2+1) * self.dim

        # global gating
        flops += N * 1 * self.dim 

        #  self.linear
        flops += N * self.dim * (self.dim + 1)

        # x = self.proj(x)
        flops += N * self.dim * self.dim
        return flops

class FocalNetBlock(nn.Module):
    r""" Focal Modulation Network Block.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resulotion.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        drop (float, optional): Dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
        focal_level (int): Number of focal levels. 
        focal_window (int): Focal window size at first focal level
        use_layerscale (bool): Whether use layerscale
        layerscale_value (float): Initial layerscale value
        use_postln (bool): Whether use layernorm after modulation
    """

    def __init__(self, dim, input_resolution, mlp_ratio=4., drop=0., drop_path=0., 
                    act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                    focal_level=1, focal_window=3,
                    use_layerscale=False, layerscale_value=1e-4, 
                    use_postln=False):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.mlp_ratio = mlp_ratio

        self.focal_window = focal_window
        self.focal_level = focal_level

        self.norm1 = norm_layer(dim)
        self.modulation = FocalModulation(dim, proj_drop=drop, focal_window=focal_window, focal_level=self.focal_level, use_postln=use_postln)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        self.gamma_1 = 1.0
        self.gamma_2 = 1.0    
        if use_layerscale:
            self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
            self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)

        self.H = None
        self.W = None

    def forward(self, x):
        H, W = self.H, self.W
        B, L, C = x.shape
        shortcut = x

        # Focal Modulation
        x = self.norm1(x)
        x = x.view(B, H, W, C)
        x = self.modulation(x).view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(self.gamma_1 * x)
        x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))

        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, " \
               f"mlp_ratio={self.mlp_ratio}"

    def flops(self):
        flops = 0
        H, W = self.input_resolution
        # norm1
        flops += self.dim * H * W
        
        # W-MSA/SW-MSA
        flops += self.modulation.flops(H*W)

        # mlp
        flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
        # norm2
        flops += self.dim * H * W
        return flops

class BasicLayer(nn.Module):
    """ A basic Focal Transformer layer for one stage.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
        focal_level (int): Number of focal levels
        focal_window (int): Focal window size at first focal level
        use_layerscale (bool): Whether use layerscale
        layerscale_value (float): Initial layerscale value
        use_postln (bool): Whether use layernorm after modulation
    """

    def __init__(self, dim, out_dim, input_resolution, depth,
                 mlp_ratio=4., drop=0., drop_path=0., norm_layer=nn.LayerNorm, 
                 downsample=None, use_checkpoint=False, 
                 focal_level=1, focal_window=1, 
                 use_conv_embed=False, 
                 use_layerscale=False, layerscale_value=1e-4, use_postln=False):

        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint
        
        # build blocks
        self.blocks = nn.ModuleList([
            FocalNetBlock(
                dim=dim, 
                input_resolution=input_resolution,
                mlp_ratio=mlp_ratio, 
                drop=drop, 
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer,
                focal_level=focal_level,
                focal_window=focal_window, 
                use_layerscale=use_layerscale, 
                layerscale_value=layerscale_value,
                use_postln=use_postln, 
            )
            for i in range(depth)])

        if downsample is not None:
            self.downsample = downsample(
                img_size=input_resolution, 
                patch_size=2, 
                in_chans=dim, 
                embed_dim=out_dim, 
                use_conv_embed=use_conv_embed, 
                norm_layer=norm_layer, 
                is_stem=False
            )
        else:
            self.downsample = None

    def forward(self, x, H, W):
        for blk in self.blocks:
            blk.H, blk.W = H, W
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)

        if self.downsample is not None:
            x = x.transpose(1, 2).reshape(x.shape[0], -1, H, W)
            x, Ho, Wo = self.downsample(x)
        else:
            Ho, Wo = H, W        
        return x, Ho, Wo

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"

    def flops(self):
        flops = 0
        for blk in self.blocks:
            flops += blk.flops()
        if self.downsample is not None:
            flops += self.downsample.flops()
        return flops

class PatchEmbed(nn.Module):
    r""" Image to Patch Embedding

    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self, img_size=(224, 224), patch_size=4, in_chans=3, embed_dim=96, use_conv_embed=False, norm_layer=None, is_stem=False):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        if use_conv_embed:
            # if we choose to use conv embedding, then we treat the stem and non-stem differently
            if is_stem:
                kernel_size = 7; padding = 2; stride = 4
            else:
                kernel_size = 3; padding = 1; stride = 2
            self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
        else:
            self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        B, C, H, W = x.shape

        x = self.proj(x)        
        H, W = x.shape[2:]
        x = x.flatten(2).transpose(1, 2)  # B Ph*Pw C
        if self.norm is not None:
            x = self.norm(x)
        return x, H, W

    def flops(self):
        Ho, Wo = self.patches_resolution
        flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
        if self.norm is not None:
            flops += Ho * Wo * self.embed_dim
        return flops

class FocalNet(nn.Module):
    r""" Focal Modulation Networks (FocalNets)

    Args:
        img_size (int | tuple(int)): Input image size. Default 224
        patch_size (int | tuple(int)): Patch size. Default: 4
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each Focal Transformer layer.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        drop_rate (float): Dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False 
        focal_levels (list): How many focal levels at all stages. Note that this excludes the finest-grain level. Default: [1, 1, 1, 1] 
        focal_windows (list): The focal window size at all stages. Default: [7, 5, 3, 1] 
        use_conv_embed (bool): Whether use convolutional embedding. We noted that using convolutional embedding usually improve the performance, but we do not use it by default. Default: False 
        use_layerscale (bool): Whether use layerscale proposed in CaiT. Default: False 
        layerscale_value (float): Value for layer scale. Default: 1e-4 
        use_postln (bool): Whether use layernorm after modulation (it helps stablize training of large models)
    """
    def __init__(self, 
                img_size=224, 
                patch_size=4, 
                in_chans=3, 
                num_classes=1000,
                embed_dim=96, 
                depths=[2, 2, 6, 2], 
                mlp_ratio=4., 
                drop_rate=0., 
                drop_path_rate=0.1,
                norm_layer=nn.LayerNorm, 
                patch_norm=True,
                use_checkpoint=False,                 
                focal_levels=[2, 2, 2, 2], 
                focal_windows=[3, 3, 3, 3], 
                use_conv_embed=False, 
                use_layerscale=False, 
                layerscale_value=1e-4, 
                use_postln=False, 
                **kwargs):
        super().__init__()

        self.num_layers = len(depths)
        embed_dim = [embed_dim * (2 ** i) for i in range(self.num_layers)]

        self.num_classes = num_classes
        self.embed_dim = embed_dim
        self.patch_norm = patch_norm
        self.num_features = embed_dim[-1]
        self.mlp_ratio = mlp_ratio
        
        # split image into patches using either non-overlapped embedding or overlapped embedding
        self.patch_embed = PatchEmbed(
            img_size=to_2tuple(img_size), 
            patch_size=patch_size, 
            in_chans=in_chans, 
            embed_dim=embed_dim[0], 
            use_conv_embed=use_conv_embed, 
            norm_layer=norm_layer if self.patch_norm else None, 
            is_stem=True)

        num_patches = self.patch_embed.num_patches
        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution
        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build layers
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = BasicLayer(dim=embed_dim[i_layer], 
                               out_dim=embed_dim[i_layer+1] if (i_layer < self.num_layers - 1) else None,  
                               input_resolution=(patches_resolution[0] // (2 ** i_layer),
                                                 patches_resolution[1] // (2 ** i_layer)),
                               depth=depths[i_layer],
                               mlp_ratio=self.mlp_ratio,
                               drop=drop_rate, 
                               drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                               norm_layer=norm_layer, 
                               downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None,
                               focal_level=focal_levels[i_layer], 
                               focal_window=focal_windows[i_layer], 
                               use_conv_embed=use_conv_embed,
                               use_checkpoint=use_checkpoint, 
                               use_layerscale=use_layerscale, 
                               layerscale_value=layerscale_value, 
                               use_postln=use_postln,
                    )
            self.layers.append(layer)

        self.norm = norm_layer(self.num_features)
        self.avgpool = nn.AdaptiveAvgPool1d(1)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {''}

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {''}

    def forward_features(self, x):
        x, H, W = self.patch_embed(x)
        x = self.pos_drop(x)

        for layer in self.layers:
            x, H, W = layer(x, H, W)
        x = self.norm(x)  # B L C
        x = self.avgpool(x.transpose(1, 2))  # B C 1
        x = torch.flatten(x, 1)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x

    def flops(self):
        flops = 0
        flops += self.patch_embed.flops()
        for i, layer in enumerate(self.layers):
            flops += layer.flops()
        flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
        flops += self.num_features * self.num_classes
        return flops

def build_transforms(img_size, center_crop=False):
    t = [transforms.ToPILImage()]
    if center_crop:
        size = int((256 / 224) * img_size)
        t.append(
            transforms.Resize(size)
        )
        t.append(
            transforms.CenterCrop(img_size)    
        )
    else:
        t.append(
            transforms.Resize(img_size)
        )        
    t.append(transforms.ToTensor())
    t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
    return transforms.Compose(t)

def build_transforms4display(img_size, center_crop=False):
    t = [transforms.ToPILImage()]
    if center_crop:
        size = int((256 / 224) * img_size)
        t.append(
            transforms.Resize(size)
        )
        t.append(
            transforms.CenterCrop(img_size)    
        )
    else:
        t.append(
            transforms.Resize(img_size)
        )  
    t.append(transforms.ToTensor())
    return transforms.Compose(t)

model_urls = {
    "focalnet_tiny_srf": "",
    "focalnet_small_srf": "",
    "focalnet_base_srf": "",
    "focalnet_tiny_lrf": "",
    "focalnet_small_lrf": "",
    "focalnet_base_lrf": "",    
}

@register_model
def focalnet_tiny_srf(pretrained=False, **kwargs):
    model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, **kwargs)
    if pretrained:
        url = model_urls['focalnet_tiny_srf']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
        model.load_state_dict(checkpoint["model"])
    return model

@register_model
def focalnet_small_srf(pretrained=False, **kwargs):
    model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, **kwargs)
    if pretrained:
        url = model_urls['focalnet_small_srf']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(checkpoint["model"])
    return model

@register_model
def focalnet_base_srf(pretrained=False, **kwargs):
    model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, **kwargs)
    if pretrained:
        url = model_urls['focalnet_base_srf']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(checkpoint["model"])
    return model

@register_model
def focalnet_tiny_lrf(pretrained=False, **kwargs):
    model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs)
    if pretrained:
        url = model_urls['focalnet_tiny_lrf']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
        model.load_state_dict(checkpoint["model"])
    return model

@register_model
def focalnet_small_lrf(pretrained=False, **kwargs):
    model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs)
    if pretrained:
        url = model_urls['focalnet_small_lrf']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(checkpoint["model"])
    return model

@register_model
def focalnet_base_lrf(pretrained=False, **kwargs):
    model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, focal_levels=[3, 3, 3, 3], **kwargs)
    if pretrained:
        url = model_urls['focalnet_base_lrf']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(checkpoint["model"])
    return model

@register_model
def focalnet_tiny_iso_16(pretrained=False, **kwargs):
    model = FocalNet(depths=[12], patch_size=16, embed_dim=192, focal_levels=[3], focal_windows=[3], **kwargs)
    if pretrained:
        url = model_urls['focalnet_tiny_iso_16']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
        model.load_state_dict(checkpoint["model"])
    return model

@register_model
def focalnet_small_iso_16(pretrained=False, **kwargs):
    model = FocalNet(depths=[12], patch_size=16, embed_dim=384, focal_levels=[3], focal_windows=[3], **kwargs)
    if pretrained:
        url = model_urls['focalnet_small_iso_16']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(checkpoint["model"])
    return model

@register_model
def focalnet_base_iso_16(pretrained=False, **kwargs):
    model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], focal_windows=[3], use_layerscale=True, use_postln=True, **kwargs)
    if pretrained:
        url = model_urls['focalnet_base_iso_16']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(checkpoint["model"])
    return model

if __name__ == '__main__':
    img_size = 224
    x = torch.rand(16, 3, img_size, img_size).cuda()
    # model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96)
    # model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], focal_windows=[3], focal_factors=[2])
    model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, focal_levels=[3, 3, 3, 3]).cuda()
    print(model); model(x)

    flops = model.flops()
    print(f"number of GFLOPs: {flops / 1e9}")

    n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print(f"number of params: {n_parameters}")