File size: 6,818 Bytes
4fb0503
 
 
 
fda141d
 
4fb0503
 
 
 
 
 
 
 
 
 
 
fda141d
 
 
4fb0503
 
fda141d
4fb0503
 
 
 
 
 
 
 
fda141d
4fb0503
fda141d
 
 
4fb0503
 
fda141d
4fb0503
 
 
 
 
 
 
 
 
 
fda141d
292a922
4fb0503
 
 
fda141d
 
 
 
4fb0503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fda141d
4fb0503
 
 
 
 
 
 
 
 
 
 
 
fda141d
4fb0503
 
 
fda141d
4fb0503
 
fda141d
4fb0503
 
 
 
 
 
 
 
 
fda141d
 
4fb0503
 
fda141d
4fb0503
fda141d
4fb0503
292a922
 
 
 
 
4fb0503
 
 
 
 
 
 
 
 
 
 
 
 
fda141d
 
 
4fb0503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292a922
 
4fb0503
 
 
 
fda141d
4fb0503
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
import torch
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
from mammal.keys import (
    CLS_PRED,
    ENCODER_INPUTS_ATTENTION_MASK,
    ENCODER_INPUTS_STR,
    ENCODER_INPUTS_TOKENS,
    SCORES,
)
from mammal.model import Mammal

from mammal_demo.demo_framework import MammalObjectBroker, MammalTask


class TcrTask(MammalTask):
    def __init__(self, model_dict):
        super().__init__(
            name="T-cell receptors-peptide binding specificity", model_dict=model_dict
        )
        self.description = "T-cell receptors-peptide binding specificity (TCR)"
        self.examples = {
            "tcr_beta_seq": "NAGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQDPGMGLRLIHYSVGAGITDQGEVPNGYNVSRSTTEDFPLRLLSAAPSQTSVYFCASSYSWDRVLEQYFGPGTRLTVT",
            "epitope_seq": "LLQTGIHVRVSQPSL",
        }
        self.markup_text = """
# Mammal based T-cell receptors-peptide binding specificity demonstration

Given the TCR beta sequance and the epitope sequacne, estimate the binding specificity.
"""

    def create_prompt(self, tcr_beta_seq, epitope_seq):
        prompt = (
            "<@TOKENIZER-TYPE=AA><BINDING_AFFINITY_CLASS><SENTINEL_ID_0>"
            + f"<@TOKENIZER-TYPE=AA><MOLECULAR_ENTITY><MOLECULAR_ENTITY_TCR_BETA_VDJ><SEQUENCE_NATURAL_START>{tcr_beta_seq}<SEQUENCE_NATURAL_END>"
            + f"<@TOKENIZER-TYPE=AA><MOLECULAR_ENTITY><MOLECULAR_ENTITY_EPITOPE><SEQUENCE_NATURAL_START>{epitope_seq}<SEQUENCE_NATURAL_END><EOS>"
        )

        return prompt

    def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker):
        """convert sample_inputs to sample_dict including creating a proper prompt

        Args:
            sample_inputs (dict): dictionary containing the inputs to the model
            model_holder (MammalObjectBroker): model holder
        Returns:
           dict: sample_dict for feeding into model
        """
        sample_dict = dict()
        sample_dict[ENCODER_INPUTS_STR] = self.create_prompt(**sample_inputs)
        tokenizer_op = model_holder.tokenizer_op
        model = model_holder.model
        tokenizer_op(
            sample_dict=sample_dict,
            key_in=ENCODER_INPUTS_STR,
            key_out_tokens_ids=ENCODER_INPUTS_TOKENS,
            key_out_attention_mask=ENCODER_INPUTS_ATTENTION_MASK,
        )
        sample_dict[ENCODER_INPUTS_TOKENS] = torch.tensor(
            sample_dict[ENCODER_INPUTS_TOKENS], device=model.device
        )
        sample_dict[ENCODER_INPUTS_ATTENTION_MASK] = torch.tensor(
            sample_dict[ENCODER_INPUTS_ATTENTION_MASK], device=model.device
        )

        return sample_dict

    def run_model(self, sample_dict, model: Mammal):
        # Generate Prediction
        batch_dict = model.generate(
            [sample_dict],
            output_scores=True,
            return_dict_in_generate=True,
            max_new_tokens=5,
        )
        return batch_dict

    @staticmethod
    def positive_token_id(tokenizer_op: ModularTokenizerOp):
        """token for positive binding

        Args:
            model (MammalTrainedModel): model holding tokenizer

        Returns:
            int: id of positive binding token
        """
        return tokenizer_op.get_token_id("<1>")

    @staticmethod
    def negative_token_id(tokenizer_op: ModularTokenizerOp):
        """token for negative binding

        Args:
            model (MammalTrainedModel): model holding tokenizer

        Returns:
            int: id of negative binding token
        """
        return tokenizer_op.get_token_id("<0>")

    def decode_output(self, batch_dict, tokenizer_op: ModularTokenizerOp) -> list:
        """
        Extract predicted class and scores
        """

        # positive_token_id = self.positive_token_id(tokenizer_op)
        # negative_token_id = self.negative_token_id(tokenizer_op)

        negative_token_id = tokenizer_op.get_token_id("<0>")
        positive_token_id = tokenizer_op.get_token_id("<1>")

        label_id_to_int = {
            negative_token_id: 0,
            positive_token_id: 1,
        }
        classification_position = 1

        decoder_output = batch_dict[CLS_PRED][0]
        decoder_output_scores = batch_dict[SCORES][0]

        if decoder_output_scores is not None:
            scores = decoder_output_scores[classification_position, positive_token_id]
        else:
            scores = [None]

        ans = [
            tokenizer_op._tokenizer.decode(batch_dict[CLS_PRED][0]),
            label_id_to_int.get(int(decoder_output[classification_position]), -1),
            scores.item(),
        ]
        return ans

    def create_and_run_prompt(self, model_name, tcr_beta_seq, epitope_seq):
        model_holder = self.model_dict[model_name]
        inputs = {
            "tcr_beta_seq": tcr_beta_seq,
            "epitope_seq": epitope_seq,
        }
        sample_dict = self.crate_sample_dict(
            sample_inputs=inputs, model_holder=model_holder
        )
        prompt = sample_dict[ENCODER_INPUTS_STR]
        batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model)
        res = prompt, *self.decode_output(
            batch_dict, tokenizer_op=model_holder.tokenizer_op
        )
        return res

    def create_demo(self, model_name_widget):

        with gr.Group() as demo:
            gr.Markdown(self.markup_text)
            with gr.Row():
                tcr_textbox = gr.Textbox(
                    label="T-cell receptor beta sequence",
                    # info="standard",
                    interactive=True,
                    lines=3,
                    value=self.examples["tcr_beta_seq"],
                )
                epitope_textbox = gr.Textbox(
                    label="Epitope sequace",
                    # info="standard",
                    interactive=True,
                    lines=3,
                    value=self.examples["epitope_seq"],
                )
            with gr.Row():
                run_mammal = gr.Button(
                    "Run Mammal prompt for TCL-Epitope Interaction",
                    variant="primary",
                )
            with gr.Row():
                prompt_box = gr.Textbox(label="Mammal prompt", lines=5)

            with gr.Row():
                decoded = gr.Textbox(label="Mammal output")
                predicted_class = gr.Textbox(label="Mammal prediction")
                binding_score = gr.Number(label="Binding score")
                run_mammal.click(
                    fn=self.create_and_run_prompt,
                    inputs=[model_name_widget, tcr_textbox, epitope_textbox],
                    outputs=[prompt_box, decoded, predicted_class, binding_score],
                )
            demo.visible = False
            return demo