Spaces:
Sleeping
Sleeping
matanninio
commited on
Commit
·
fda141d
1
Parent(s):
49831fb
refactoring to make code more elegant and cleanups
Browse files- app.py +36 -38
- mammal_demo/demo_framework.py +28 -2
- mammal_demo/ps_task.py +18 -19
- mammal_demo/tcr_task.py +28 -38
app.py
CHANGED
@@ -1,57 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
from mammal_demo.demo_framework import
|
|
|
|
|
|
|
4 |
from mammal_demo.dti_task import DtiTask
|
5 |
from mammal_demo.ppi_task import PpiTask
|
6 |
-
from mammal_demo.tcr_task import TcrTask
|
7 |
from mammal_demo.ps_task import PsTask
|
|
|
8 |
|
9 |
-
all_tasks
|
10 |
-
all_models
|
11 |
-
|
12 |
|
13 |
# first create the required tasks
|
14 |
# Note that the tasks need access to the models, as the model to use depends on the state of the widget
|
15 |
# we pass the all_models dict and update it when we actualy have the models.
|
16 |
-
ppi_task = PpiTask(model_dict=all_models)
|
17 |
-
all_tasks[ppi_task.name] = ppi_task
|
18 |
-
|
19 |
-
tdi_task = DtiTask(model_dict=all_models)
|
20 |
-
all_tasks[tdi_task.name] = tdi_task
|
21 |
-
|
22 |
-
tcr_task = TcrTask(model_dict=all_models)
|
23 |
-
all_tasks[tcr_task.name] = tcr_task
|
24 |
-
|
25 |
-
|
26 |
-
ps_task = PsTask(model_dict=all_models)
|
27 |
-
all_tasks[ps_task.name] = ps_task
|
28 |
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# create the model holders. hold the model and the tokenizer, lazy download
|
31 |
# note that the list of relevent tasks needs to be stated.
|
32 |
-
|
33 |
-
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m", task_list=[ppi_task.name,tcr_task.name]
|
34 |
-
)
|
35 |
-
all_models[ppi_model.name] = ppi_model
|
36 |
-
|
37 |
-
tdi_model = MammalObjectBroker(
|
38 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd",
|
39 |
-
task_list=[tdi_task
|
40 |
)
|
41 |
-
all_models
|
42 |
-
|
43 |
-
|
44 |
-
model_path= "ibm/biomed.omics.bl.sm.ma-ted-458m.tcr_epitope_bind",
|
45 |
-
task_list=[tcr_task.name]
|
46 |
)
|
47 |
-
all_models
|
48 |
-
|
49 |
-
ps_model = MammalObjectBroker(
|
50 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.protein_solubility",
|
51 |
-
task_list=[ps_task
|
52 |
)
|
53 |
-
all_models
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
def create_application():
|
57 |
def task_change(value):
|
@@ -62,13 +52,18 @@ def create_application():
|
|
62 |
if value in model.tasks
|
63 |
]
|
64 |
if choices:
|
65 |
-
return (
|
|
|
|
|
|
|
66 |
else:
|
67 |
return (gr.skip, *visibility)
|
68 |
# return model_name_dropdown
|
69 |
|
70 |
with gr.Blocks() as application:
|
71 |
-
task_dropdown = gr.Dropdown(
|
|
|
|
|
72 |
task_dropdown.interactive = True
|
73 |
model_name_dropdown = gr.Dropdown(
|
74 |
choices=[
|
@@ -85,7 +80,10 @@ def create_application():
|
|
85 |
task_change,
|
86 |
inputs=[task_dropdown],
|
87 |
outputs=[model_name_dropdown]
|
88 |
-
+ [
|
|
|
|
|
|
|
89 |
)
|
90 |
|
91 |
# def set_demo_vis(main_text):
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
from mammal_demo.demo_framework import (
|
4 |
+
ModelRegistry,
|
5 |
+
TaskRegistry,
|
6 |
+
)
|
7 |
from mammal_demo.dti_task import DtiTask
|
8 |
from mammal_demo.ppi_task import PpiTask
|
|
|
9 |
from mammal_demo.ps_task import PsTask
|
10 |
+
from mammal_demo.tcr_task import TcrTask
|
11 |
|
12 |
+
all_tasks = TaskRegistry()
|
13 |
+
all_models = ModelRegistry()
|
|
|
14 |
|
15 |
# first create the required tasks
|
16 |
# Note that the tasks need access to the models, as the model to use depends on the state of the widget
|
17 |
# we pass the all_models dict and update it when we actualy have the models.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
ppi_task = all_tasks.register_task(PpiTask(model_dict=all_models))
|
20 |
+
tdi_task = all_tasks.register_task(DtiTask(model_dict=all_models))
|
21 |
+
tcr_task = all_tasks.register_task(TcrTask(model_dict=all_models))
|
22 |
+
ps_task = all_tasks.register_task(PsTask(model_dict=all_models))
|
23 |
|
24 |
# create the model holders. hold the model and the tokenizer, lazy download
|
25 |
# note that the list of relevent tasks needs to be stated.
|
26 |
+
all_models.register_model(
|
|
|
|
|
|
|
|
|
|
|
27 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd",
|
28 |
+
task_list=[tdi_task],
|
29 |
)
|
30 |
+
all_models.register_model(
|
31 |
+
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.tcr_epitope_bind",
|
32 |
+
task_list=[tcr_task],
|
|
|
|
|
33 |
)
|
34 |
+
all_models.register_model(
|
|
|
|
|
35 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.protein_solubility",
|
36 |
+
task_list=[ps_task],
|
37 |
)
|
38 |
+
all_models.register_model(
|
39 |
+
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m",
|
40 |
+
task_list=[ppi_task, tcr_task],
|
41 |
+
)
|
42 |
+
all_models.register_model("https://huggingface.co/ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_tox")
|
43 |
+
all_models.register_model("https://huggingface.co/ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_fda")
|
44 |
+
all_models.register_model("https://huggingface.co/ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_bbbp")
|
45 |
|
46 |
def create_application():
|
47 |
def task_change(value):
|
|
|
52 |
if value in model.tasks
|
53 |
]
|
54 |
if choices:
|
55 |
+
return (
|
56 |
+
gr.update(choices=choices, value=choices[0], visible=True),
|
57 |
+
*visibility,
|
58 |
+
)
|
59 |
else:
|
60 |
return (gr.skip, *visibility)
|
61 |
# return model_name_dropdown
|
62 |
|
63 |
with gr.Blocks() as application:
|
64 |
+
task_dropdown = gr.Dropdown(
|
65 |
+
choices=["Select task"] + list(all_tasks.keys()), label="Mammal Task"
|
66 |
+
)
|
67 |
task_dropdown.interactive = True
|
68 |
model_name_dropdown = gr.Dropdown(
|
69 |
choices=[
|
|
|
80 |
task_change,
|
81 |
inputs=[task_dropdown],
|
82 |
outputs=[model_name_dropdown]
|
83 |
+
+ [
|
84 |
+
all_tasks[task].demo(model_name_widgit=model_name_dropdown)
|
85 |
+
for task in all_tasks
|
86 |
+
],
|
87 |
)
|
88 |
|
89 |
# def set_demo_vis(main_text):
|
mammal_demo/demo_framework.py
CHANGED
@@ -90,15 +90,41 @@ class MammalTask(ABC):
|
|
90 |
|
91 |
def demo(self, model_name_widgit: gr.component = None):
|
92 |
if self._demo is None:
|
93 |
-
model_name_widget: gr.component
|
94 |
self._demo = self.create_demo(model_name_widget=model_name_widgit)
|
95 |
return self._demo
|
96 |
|
97 |
@abstractmethod
|
98 |
-
def decode_output(self, batch_dict, model: Mammal):
|
99 |
raise NotImplementedError()
|
100 |
|
101 |
# self._setup()
|
102 |
|
103 |
# def _setup(self):
|
104 |
# pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
def demo(self, model_name_widgit: gr.component = None):
|
92 |
if self._demo is None:
|
|
|
93 |
self._demo = self.create_demo(model_name_widget=model_name_widgit)
|
94 |
return self._demo
|
95 |
|
96 |
@abstractmethod
|
97 |
+
def decode_output(self, batch_dict, model: Mammal) -> list:
|
98 |
raise NotImplementedError()
|
99 |
|
100 |
# self._setup()
|
101 |
|
102 |
# def _setup(self):
|
103 |
# pass
|
104 |
+
|
105 |
+
|
106 |
+
class TaskRegistry(dict[str, MammalTask]):
|
107 |
+
"""just a dictionary with a register method"""
|
108 |
+
|
109 |
+
def register_task(self, task: MammalTask):
|
110 |
+
self[task.name] = task
|
111 |
+
return task.name
|
112 |
+
|
113 |
+
|
114 |
+
class ModelRegistry(dict[str, MammalObjectBroker]):
|
115 |
+
"""just a dictionary with a register models"""
|
116 |
+
|
117 |
+
def register_model(self, model_path, task_list=None, name=None):
|
118 |
+
"""register a model and return the name of the model
|
119 |
+
Args:
|
120 |
+
model_path (_type_): _description_
|
121 |
+
name (optional str): explicit name for the model
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
str: model name
|
125 |
+
"""
|
126 |
+
model_holder = MammalObjectBroker(
|
127 |
+
model_path=model_path, task_list=task_list, name=name
|
128 |
+
)
|
129 |
+
self[model_holder.name] = model_holder
|
130 |
+
return model_holder.name
|
mammal_demo/ps_task.py
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
4 |
from mammal.examples.protein_solubility.task import ProteinSolubilityTask
|
5 |
from mammal.keys import (
|
6 |
-
ENCODER_INPUTS_STR,
|
7 |
CLS_PRED,
|
|
|
8 |
SCORES,
|
9 |
)
|
10 |
from mammal.model import Mammal
|
@@ -25,8 +24,6 @@ class PsTask(MammalTask):
|
|
25 |
Given the protein sequance, estimate if it's soluble or insoluble.
|
26 |
"""
|
27 |
|
28 |
-
|
29 |
-
|
30 |
def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker):
|
31 |
"""convert sample_inputs to sample_dict including creating a proper prompt
|
32 |
|
@@ -36,12 +33,12 @@ Given the protein sequance, estimate if it's soluble or insoluble.
|
|
36 |
Returns:
|
37 |
dict: sample_dict for feeding into model
|
38 |
"""
|
39 |
-
sample_dict = dict(sample_inputs)
|
40 |
sample_dict = ProteinSolubilityTask.data_preprocessing(
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
)
|
46 |
|
47 |
return sample_dict
|
@@ -56,8 +53,7 @@ Given the protein sequance, estimate if it's soluble or insoluble.
|
|
56 |
)
|
57 |
return batch_dict
|
58 |
|
59 |
-
def decode_output(self, batch_dict, tokenizer_op: ModularTokenizerOp)->
|
60 |
-
|
61 |
"""
|
62 |
Extract predicted class and scores
|
63 |
"""
|
@@ -71,11 +67,9 @@ Given the protein sequance, estimate if it's soluble or insoluble.
|
|
71 |
ans_dict["pred"],
|
72 |
ans_dict["not_normalized_scores"].item(),
|
73 |
ans_dict["normalized_scores"].item(),
|
74 |
-
]
|
75 |
return ans
|
76 |
|
77 |
-
|
78 |
-
|
79 |
def create_and_run_prompt(self, model_name, protein_seq):
|
80 |
model_holder = self.model_dict[model_name]
|
81 |
inputs = {
|
@@ -86,14 +80,13 @@ Given the protein sequance, estimate if it's soluble or insoluble.
|
|
86 |
)
|
87 |
prompt = sample_dict[ENCODER_INPUTS_STR]
|
88 |
batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model)
|
89 |
-
res = prompt, *self.decode_output(
|
|
|
|
|
90 |
return res
|
91 |
|
92 |
-
|
93 |
-
|
94 |
def create_demo(self, model_name_widget):
|
95 |
|
96 |
-
|
97 |
with gr.Group() as demo:
|
98 |
gr.Markdown(self.markup_text)
|
99 |
with gr.Row():
|
@@ -121,7 +114,13 @@ Given the protein sequance, estimate if it's soluble or insoluble.
|
|
121 |
run_mammal.click(
|
122 |
fn=self.create_and_run_prompt,
|
123 |
inputs=[model_name_widget, protein_textbox],
|
124 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
)
|
126 |
demo.visible = False
|
127 |
return demo
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
3 |
from mammal.examples.protein_solubility.task import ProteinSolubilityTask
|
4 |
from mammal.keys import (
|
|
|
5 |
CLS_PRED,
|
6 |
+
ENCODER_INPUTS_STR,
|
7 |
SCORES,
|
8 |
)
|
9 |
from mammal.model import Mammal
|
|
|
24 |
Given the protein sequance, estimate if it's soluble or insoluble.
|
25 |
"""
|
26 |
|
|
|
|
|
27 |
def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker):
|
28 |
"""convert sample_inputs to sample_dict including creating a proper prompt
|
29 |
|
|
|
33 |
Returns:
|
34 |
dict: sample_dict for feeding into model
|
35 |
"""
|
36 |
+
sample_dict = dict(sample_inputs) # shallow copy
|
37 |
sample_dict = ProteinSolubilityTask.data_preprocessing(
|
38 |
+
sample_dict=sample_dict,
|
39 |
+
protein_sequence_key="protein_seq",
|
40 |
+
tokenizer_op=model_holder.tokenizer_op,
|
41 |
+
device=model_holder.model.device,
|
42 |
)
|
43 |
|
44 |
return sample_dict
|
|
|
53 |
)
|
54 |
return batch_dict
|
55 |
|
56 |
+
def decode_output(self, batch_dict, tokenizer_op: ModularTokenizerOp) -> list:
|
|
|
57 |
"""
|
58 |
Extract predicted class and scores
|
59 |
"""
|
|
|
67 |
ans_dict["pred"],
|
68 |
ans_dict["not_normalized_scores"].item(),
|
69 |
ans_dict["normalized_scores"].item(),
|
70 |
+
]
|
71 |
return ans
|
72 |
|
|
|
|
|
73 |
def create_and_run_prompt(self, model_name, protein_seq):
|
74 |
model_holder = self.model_dict[model_name]
|
75 |
inputs = {
|
|
|
80 |
)
|
81 |
prompt = sample_dict[ENCODER_INPUTS_STR]
|
82 |
batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model)
|
83 |
+
res = prompt, *self.decode_output(
|
84 |
+
batch_dict, tokenizer_op=model_holder.tokenizer_op
|
85 |
+
)
|
86 |
return res
|
87 |
|
|
|
|
|
88 |
def create_demo(self, model_name_widget):
|
89 |
|
|
|
90 |
with gr.Group() as demo:
|
91 |
gr.Markdown(self.markup_text)
|
92 |
with gr.Row():
|
|
|
114 |
run_mammal.click(
|
115 |
fn=self.create_and_run_prompt,
|
116 |
inputs=[model_name_widget, protein_textbox],
|
117 |
+
outputs=[
|
118 |
+
prompt_box,
|
119 |
+
decoded,
|
120 |
+
predicted_class,
|
121 |
+
non_norm_score,
|
122 |
+
norm_score,
|
123 |
+
],
|
124 |
)
|
125 |
demo.visible = False
|
126 |
return demo
|
mammal_demo/tcr_task.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
4 |
-
from mammal.examples.dti_bindingdb_kd.task import DtiBindingdbKdTask
|
5 |
from mammal.keys import (
|
|
|
|
|
6 |
ENCODER_INPUTS_STR,
|
7 |
ENCODER_INPUTS_TOKENS,
|
8 |
-
ENCODER_INPUTS_ATTENTION_MASK,
|
9 |
-
CLS_PRED,
|
10 |
SCORES,
|
11 |
)
|
12 |
from mammal.model import Mammal
|
@@ -16,10 +15,12 @@ from mammal_demo.demo_framework import MammalObjectBroker, MammalTask
|
|
16 |
|
17 |
class TcrTask(MammalTask):
|
18 |
def __init__(self, model_dict):
|
19 |
-
super().__init__(
|
|
|
|
|
20 |
self.description = "T-cell receptors-peptide binding specificity (TCR)"
|
21 |
self.examples = {
|
22 |
-
"tcr_beta_seq":
|
23 |
"epitope_seq": "LLQTGIHVRVSQPSL",
|
24 |
}
|
25 |
self.markup_text = """
|
@@ -28,20 +29,14 @@ class TcrTask(MammalTask):
|
|
28 |
Given the TCR beta sequance and the epitope sequacne, estimate the binding specificity.
|
29 |
"""
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
def create_prompt(self,tcr_beta_seq, epitope_seq):
|
35 |
prompt = (
|
36 |
-
"<@TOKENIZER-TYPE=AA><BINDING_AFFINITY_CLASS><SENTINEL_ID_0>"
|
37 |
-
f"<@TOKENIZER-TYPE=AA><MOLECULAR_ENTITY><MOLECULAR_ENTITY_TCR_BETA_VDJ><SEQUENCE_NATURAL_START>{tcr_beta_seq}<SEQUENCE_NATURAL_END>"
|
38 |
-
f"<@TOKENIZER-TYPE=AA><MOLECULAR_ENTITY><MOLECULAR_ENTITY_EPITOPE><SEQUENCE_NATURAL_START>{epitope_seq}<SEQUENCE_NATURAL_END><EOS>"
|
39 |
)
|
40 |
-
|
41 |
-
return prompt
|
42 |
-
|
43 |
-
|
44 |
|
|
|
45 |
|
46 |
def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker):
|
47 |
"""convert sample_inputs to sample_dict including creating a proper prompt
|
@@ -52,15 +47,15 @@ Given the TCR beta sequance and the epitope sequacne, estimate the binding speci
|
|
52 |
Returns:
|
53 |
dict: sample_dict for feeding into model
|
54 |
"""
|
55 |
-
sample_dict= dict()
|
56 |
sample_dict[ENCODER_INPUTS_STR] = self.create_prompt(**sample_inputs)
|
57 |
tokenizer_op = model_holder.tokenizer_op
|
58 |
model = model_holder.model
|
59 |
tokenizer_op(
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
)
|
65 |
sample_dict[ENCODER_INPUTS_TOKENS] = torch.tensor(
|
66 |
sample_dict[ENCODER_INPUTS_TOKENS], device=model.device
|
@@ -92,7 +87,7 @@ Given the TCR beta sequance and the epitope sequacne, estimate the binding speci
|
|
92 |
int: id of positive binding token
|
93 |
"""
|
94 |
return tokenizer_op.get_token_id("<1>")
|
95 |
-
|
96 |
@staticmethod
|
97 |
def negative_token_id(tokenizer_op: ModularTokenizerOp):
|
98 |
"""token for negative binding
|
@@ -105,15 +100,14 @@ Given the TCR beta sequance and the epitope sequacne, estimate the binding speci
|
|
105 |
"""
|
106 |
return tokenizer_op.get_token_id("<0>")
|
107 |
|
108 |
-
def decode_output(self, batch_dict, tokenizer_op: ModularTokenizerOp)->
|
109 |
-
|
110 |
"""
|
111 |
Extract predicted class and scores
|
112 |
"""
|
113 |
-
|
114 |
# positive_token_id = self.positive_token_id(tokenizer_op)
|
115 |
# negative_token_id = self.negative_token_id(tokenizer_op)
|
116 |
-
|
117 |
negative_token_id = tokenizer_op.get_token_id("<0>")
|
118 |
positive_token_id = tokenizer_op.get_token_id("<1>")
|
119 |
|
@@ -123,14 +117,13 @@ Given the TCR beta sequance and the epitope sequacne, estimate the binding speci
|
|
123 |
}
|
124 |
classification_position = 1
|
125 |
|
126 |
-
decoder_output=batch_dict[CLS_PRED][0]
|
127 |
-
decoder_output_scores=batch_dict[SCORES][0]
|
128 |
-
|
129 |
|
130 |
if decoder_output_scores is not None:
|
131 |
-
scores = decoder_output_scores[classification_position,positive_token_id]
|
132 |
else:
|
133 |
-
scores=[None]
|
134 |
|
135 |
ans = [
|
136 |
tokenizer_op._tokenizer.decode(batch_dict[CLS_PRED][0]),
|
@@ -139,8 +132,6 @@ Given the TCR beta sequance and the epitope sequacne, estimate the binding speci
|
|
139 |
]
|
140 |
return ans
|
141 |
|
142 |
-
|
143 |
-
|
144 |
def create_and_run_prompt(self, model_name, tcr_beta_seq, epitope_seq):
|
145 |
model_holder = self.model_dict[model_name]
|
146 |
inputs = {
|
@@ -152,14 +143,13 @@ Given the TCR beta sequance and the epitope sequacne, estimate the binding speci
|
|
152 |
)
|
153 |
prompt = sample_dict[ENCODER_INPUTS_STR]
|
154 |
batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model)
|
155 |
-
res = prompt, *self.decode_output(
|
|
|
|
|
156 |
return res
|
157 |
|
158 |
-
|
159 |
-
|
160 |
def create_demo(self, model_name_widget):
|
161 |
|
162 |
-
|
163 |
with gr.Group() as demo:
|
164 |
gr.Markdown(self.markup_text)
|
165 |
with gr.Row():
|
@@ -192,7 +182,7 @@ Given the TCR beta sequance and the epitope sequacne, estimate the binding speci
|
|
192 |
run_mammal.click(
|
193 |
fn=self.create_and_run_prompt,
|
194 |
inputs=[model_name_widget, tcr_textbox, epitope_textbox],
|
195 |
-
outputs=[prompt_box, decoded, predicted_class,binding_score],
|
196 |
)
|
197 |
demo.visible = False
|
198 |
return demo
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
|
|
4 |
from mammal.keys import (
|
5 |
+
CLS_PRED,
|
6 |
+
ENCODER_INPUTS_ATTENTION_MASK,
|
7 |
ENCODER_INPUTS_STR,
|
8 |
ENCODER_INPUTS_TOKENS,
|
|
|
|
|
9 |
SCORES,
|
10 |
)
|
11 |
from mammal.model import Mammal
|
|
|
15 |
|
16 |
class TcrTask(MammalTask):
|
17 |
def __init__(self, model_dict):
|
18 |
+
super().__init__(
|
19 |
+
name="T-cell receptors-peptide binding specificity", model_dict=model_dict
|
20 |
+
)
|
21 |
self.description = "T-cell receptors-peptide binding specificity (TCR)"
|
22 |
self.examples = {
|
23 |
+
"tcr_beta_seq": "NAGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQDPGMGLRLIHYSVGAGITDQGEVPNGYNVSRSTTEDFPLRLLSAAPSQTSVYFCASSYSWDRVLEQYFGPGTRLTVT",
|
24 |
"epitope_seq": "LLQTGIHVRVSQPSL",
|
25 |
}
|
26 |
self.markup_text = """
|
|
|
29 |
Given the TCR beta sequance and the epitope sequacne, estimate the binding specificity.
|
30 |
"""
|
31 |
|
32 |
+
def create_prompt(self, tcr_beta_seq, epitope_seq):
|
|
|
|
|
|
|
33 |
prompt = (
|
34 |
+
"<@TOKENIZER-TYPE=AA><BINDING_AFFINITY_CLASS><SENTINEL_ID_0>"
|
35 |
+
+ f"<@TOKENIZER-TYPE=AA><MOLECULAR_ENTITY><MOLECULAR_ENTITY_TCR_BETA_VDJ><SEQUENCE_NATURAL_START>{tcr_beta_seq}<SEQUENCE_NATURAL_END>"
|
36 |
+
+ f"<@TOKENIZER-TYPE=AA><MOLECULAR_ENTITY><MOLECULAR_ENTITY_EPITOPE><SEQUENCE_NATURAL_START>{epitope_seq}<SEQUENCE_NATURAL_END><EOS>"
|
37 |
)
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
return prompt
|
40 |
|
41 |
def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker):
|
42 |
"""convert sample_inputs to sample_dict including creating a proper prompt
|
|
|
47 |
Returns:
|
48 |
dict: sample_dict for feeding into model
|
49 |
"""
|
50 |
+
sample_dict = dict()
|
51 |
sample_dict[ENCODER_INPUTS_STR] = self.create_prompt(**sample_inputs)
|
52 |
tokenizer_op = model_holder.tokenizer_op
|
53 |
model = model_holder.model
|
54 |
tokenizer_op(
|
55 |
+
sample_dict=sample_dict,
|
56 |
+
key_in=ENCODER_INPUTS_STR,
|
57 |
+
key_out_tokens_ids=ENCODER_INPUTS_TOKENS,
|
58 |
+
key_out_attention_mask=ENCODER_INPUTS_ATTENTION_MASK,
|
59 |
)
|
60 |
sample_dict[ENCODER_INPUTS_TOKENS] = torch.tensor(
|
61 |
sample_dict[ENCODER_INPUTS_TOKENS], device=model.device
|
|
|
87 |
int: id of positive binding token
|
88 |
"""
|
89 |
return tokenizer_op.get_token_id("<1>")
|
90 |
+
|
91 |
@staticmethod
|
92 |
def negative_token_id(tokenizer_op: ModularTokenizerOp):
|
93 |
"""token for negative binding
|
|
|
100 |
"""
|
101 |
return tokenizer_op.get_token_id("<0>")
|
102 |
|
103 |
+
def decode_output(self, batch_dict, tokenizer_op: ModularTokenizerOp) -> list:
|
|
|
104 |
"""
|
105 |
Extract predicted class and scores
|
106 |
"""
|
107 |
+
|
108 |
# positive_token_id = self.positive_token_id(tokenizer_op)
|
109 |
# negative_token_id = self.negative_token_id(tokenizer_op)
|
110 |
+
|
111 |
negative_token_id = tokenizer_op.get_token_id("<0>")
|
112 |
positive_token_id = tokenizer_op.get_token_id("<1>")
|
113 |
|
|
|
117 |
}
|
118 |
classification_position = 1
|
119 |
|
120 |
+
decoder_output = batch_dict[CLS_PRED][0]
|
121 |
+
decoder_output_scores = batch_dict[SCORES][0]
|
|
|
122 |
|
123 |
if decoder_output_scores is not None:
|
124 |
+
scores = decoder_output_scores[classification_position, positive_token_id]
|
125 |
else:
|
126 |
+
scores = [None]
|
127 |
|
128 |
ans = [
|
129 |
tokenizer_op._tokenizer.decode(batch_dict[CLS_PRED][0]),
|
|
|
132 |
]
|
133 |
return ans
|
134 |
|
|
|
|
|
135 |
def create_and_run_prompt(self, model_name, tcr_beta_seq, epitope_seq):
|
136 |
model_holder = self.model_dict[model_name]
|
137 |
inputs = {
|
|
|
143 |
)
|
144 |
prompt = sample_dict[ENCODER_INPUTS_STR]
|
145 |
batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model)
|
146 |
+
res = prompt, *self.decode_output(
|
147 |
+
batch_dict, tokenizer_op=model_holder.tokenizer_op
|
148 |
+
)
|
149 |
return res
|
150 |
|
|
|
|
|
151 |
def create_demo(self, model_name_widget):
|
152 |
|
|
|
153 |
with gr.Group() as demo:
|
154 |
gr.Markdown(self.markup_text)
|
155 |
with gr.Row():
|
|
|
182 |
run_mammal.click(
|
183 |
fn=self.create_and_run_prompt,
|
184 |
inputs=[model_name_widget, tcr_textbox, epitope_textbox],
|
185 |
+
outputs=[prompt_box, decoded, predicted_class, binding_score],
|
186 |
)
|
187 |
demo.visible = False
|
188 |
return demo
|