File size: 30,633 Bytes
d1e3e7b f217a73 d1e3e7b f217a73 d1e3e7b f217a73 d1e3e7b f217a73 d1e3e7b b607b76 d1e3e7b f217a73 d1e3e7b f217a73 d1e3e7b f217a73 d1e3e7b f217a73 d1e3e7b f217a73 d1e3e7b f217a73 d1e3e7b f217a73 d1e3e7b f217a73 d1e3e7b f217a73 d1e3e7b f217a73 d1e3e7b f217a73 d1e3e7b f217a73 d1e3e7b f217a73 d1e3e7b f217a73 d1e3e7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 |
import re
import numpy as np
import fasttext
import sentencepiece
import kenlm
import pathlib
from languages_id import langs_id
from parameters_filtering import parameters_filtering
from normalization import normalization
from stopwords import stopwords
from flagged_words import flagged_words
class LoadParameters:
@staticmethod
def load_parameters(lang_dataset_id):
if lang_dataset_id in parameters_filtering:
param = parameters_filtering[lang_dataset_id]
else:
param = parameters_filtering["default"]
return param
@staticmethod
def load_stopwords(lang_dataset_id):
stopwords_lang_id = langs_id.loc[
langs_id["dataset_id"] == lang_dataset_id, "stopwords_id"
].iloc[0]
if stopwords_lang_id:
stopwords_lang = set(stopwords[stopwords_lang_id])
else:
stopwords_lang = None
return stopwords_lang
@staticmethod
def load_flagged_words(lang_dataset_id):
flagged_words_lang_id = langs_id.loc[
langs_id["dataset_id"] == lang_dataset_id, "flagged_words_id"
].iloc[0]
if flagged_words_lang_id:
flagged_words_lang = set(flagged_words[flagged_words_lang_id])
else:
flagged_words_lang = None
return flagged_words_lang
@staticmethod
def load_model_lang_id(lang_dataset_id, path_fasttext_model):
fasttext_lang_id = langs_id.loc[
langs_id["dataset_id"] == lang_dataset_id, "fasttext_id"
].iloc[0]
if fasttext_lang_id:
model_lang_id = fasttext.load_model(path_fasttext_model)
else:
model_lang_id = None
return model_lang_id
@staticmethod
def load_sentencepiece_model(lang_dataset_id, path_sentencepiece_model):
sentencepiece_lang_id = langs_id.loc[
langs_id["dataset_id"] == lang_dataset_id, "sentencepiece_id"
].iloc[0]
if sentencepiece_lang_id:
sentencepiece_model = sentencepiece.SentencePieceProcessor()
sentencepiece_model.load(path_sentencepiece_model)
else:
sentencepiece_model = None
return sentencepiece_model
@staticmethod
def load_kenlm_model(lang_dataset_id, path_kenlm_model):
kenlm_lang_id = langs_id.loc[
langs_id["dataset_id"] == lang_dataset_id, "kenlm_id"
].iloc[0]
if kenlm_lang_id:
kenlm_model = kenlm.Model(path_kenlm_model)
else:
kenlm_model = None
return kenlm_model
class ModifyingDocuments:
@staticmethod
def remove_empty_el_from_list(list_):
return [el for el in list_ if el]
@staticmethod
def remove_non_printing_characters(document, non_printing_characters_re):
return non_printing_characters_re.sub("", document)
@staticmethod
def uniform_whitespace(
document,
whitespace=[
" ",
"β",
"β",
"β―",
"β
",
"γ",
"β",
"Β ",
"β",
"β",
"οΏΌ",
"Β",
],
):
"""There are different whitespace characters."""
whitespace = set(whitespace)
document = "".join(
[char if char not in whitespace else " " for char in document]
)
return document
@staticmethod
def replace_digits_with_zeros(document, digits_re):
return digits_re.sub("0", document)
@staticmethod
def replace_unicode_punctuation(document, unicode_punctuation):
return "".join(unicode_punctuation.get(c, c) for c in document)
@staticmethod
def normalization(
document,
remove_non_printing_characters,
strip,
lower_case,
uniform_whitespace,
replace_digits_with_zeros,
replace_unicode_punctuation,
non_printing_characters_re=normalization["non_printing_characters_re"],
digits_re=normalization["digits_re"],
unicode_punctuation=normalization["unicode_punctuation"],
):
if remove_non_printing_characters:
document = ModifyingDocuments.remove_non_printing_characters(
document, non_printing_characters_re
)
if strip:
document = document.strip()
if not document:
return document
if lower_case:
document = document.lower()
if uniform_whitespace:
document = ModifyingDocuments.uniform_whitespace(document)
if replace_digits_with_zeros:
document = ModifyingDocuments.replace_digits_with_zeros(document, digits_re)
if replace_unicode_punctuation:
document = ModifyingDocuments.replace_unicode_punctuation(
document, unicode_punctuation
)
return document
@staticmethod
def tokenization(document, sentencepiece_model, join_on_whitespace):
document_tokenized = sentencepiece_model.encode_as_pieces(document)
if join_on_whitespace:
document_tokenized = " ".join(document_tokenized)
return document_tokenized
@staticmethod
def split_on_whitespace(
document,
new_line=False,
tab=False,
):
"""This method also removes concatenated spaces."""
sep = [" "] + new_line * ["\n"] + tab * ["\t"]
sep = "|".join(sep)
split_document = re.split(sep, document)
split_document = ModifyingDocuments.remove_empty_el_from_list(split_document)
return split_document
@staticmethod
def strip(document, strip_characters):
"""Way faster than document.strip(strip_characters)
since strip_characters is now a set instead of a str,
and it contains a lot of elements (all the emojis)."""
if not document:
return document
beg_ind = 0
end_ind = len(document)
for i in range(len(document)):
if document[i] in strip_characters:
beg_ind += 1
else:
break
for i in range(1, len(document) + 1):
if document[-i] in strip_characters:
end_ind -= 1
else:
break
document_stripped = document[beg_ind:end_ind]
return document_stripped
@staticmethod
def get_words_from_document(
document, sentencepiece_model_tok, lower_case, strip_characters
):
"""Get words from a document. Non reversible since the document
is split on multiple characters, words are stripped of
special characters and characters are converted to lower case.
Useful to compute ratios, like the stopwords ratio."""
if sentencepiece_model_tok:
document_normalized = ModifyingDocuments.normalization(
document=document,
remove_non_printing_characters=True,
strip=True,
lower_case=True,
uniform_whitespace=True,
replace_digits_with_zeros=True,
replace_unicode_punctuation=True,
)
words = ModifyingDocuments.tokenization(
document_normalized, sentencepiece_model_tok, join_on_whitespace=False
)
else:
words = ModifyingDocuments.split_on_whitespace(
document, new_line=True, tab=True
)
if lower_case:
words = [word.lower() for word in words]
if strip_characters:
words = [ModifyingDocuments.strip(word, strip_characters) for word in words]
words = ModifyingDocuments.remove_empty_el_from_list(words)
return words
@staticmethod
def words_augmentation(words, group_size, join_char):
"""Augment words, especially for Chinese (without a space between words)
and Vietnamese (with a space between syllables)."""
augmentation = [
join_char.join(words[i : i + group_size])
for i in range(len(words) - group_size + 1)
]
return augmentation
@staticmethod
def split_on_newline_tab_whitespace(document):
"""First split on "\n", then on "\t", then on " "."""
sentences = document.split("\n")
sentences = [sentence.split("\t") for sentence in sentences]
sentences = [
[
ModifyingDocuments.split_on_whitespace(subsentence)
for subsentence in sentence
]
for sentence in sentences
]
return sentences
@staticmethod
def merge_on_whitespace_tab_newline(sentences):
"""Invert the method split_on_newline_tab_whitespace.
Removes concatenated separators."""
sentences = [
[" ".join(subsentence) for subsentence in sentence if subsentence]
for sentence in sentences
]
sentences = ["\t".join(sentence) for sentence in sentences if sentence]
if not sentences:
return ""
document = "\n".join(sentences)
return document
@staticmethod
def should_keep_word_with_incorrect_substrings(
word, strip_characters, incorrect_word_substrings
):
word = ModifyingDocuments.strip(word, strip_characters)
should_keep = all(
[(i_substr not in word) for i_substr in incorrect_word_substrings]
)
return should_keep
@staticmethod
def remove_words_with_incorrect_substrings(
document,
strip_characters,
incorrect_word_substrings,
):
sentences = ModifyingDocuments.split_on_newline_tab_whitespace(document)
sentences = [
[
[
word
for word in subsentence
if ModifyingDocuments.should_keep_word_with_incorrect_substrings(
word, strip_characters, incorrect_word_substrings
)
]
for subsentence in sentence
]
for sentence in sentences
]
document = ModifyingDocuments.merge_on_whitespace_tab_newline(sentences)
return document
@staticmethod
def should_keep_long_word(word, strip_characters, length_word_max_cutoff):
"""If the word is too long but it contains only one
special character, it might be a concatenation of one word,
a punctuation, and another word, with no space between them.
In this case, we give the word a pass."""
if len(word) <= length_word_max_cutoff:
return True
word = ModifyingDocuments.strip(word, strip_characters)
if not word: # The word consisted only of strip characters
return False
if len(word) <= length_word_max_cutoff:
return True
return False
def remove_long_words(
document,
strip_characters,
length_word_max_cutoff,
):
sentences = ModifyingDocuments.split_on_newline_tab_whitespace(document)
sentences = [
[
[
word
for word in subsentence
if ModifyingDocuments.should_keep_long_word(
word,
strip_characters,
length_word_max_cutoff,
)
]
for subsentence in sentence
]
for sentence in sentences
]
document = ModifyingDocuments.merge_on_whitespace_tab_newline(sentences)
return document
@staticmethod
def modifying_documents(
document,
cond_uniform_whitespace,
cond_replace_unicode_punctuation,
cond_remove_words_with_incorrect_substrings,
strip_characters,
incorrect_word_substrings,
cond_remove_long_words,
length_word_max_cutoff,
):
document = ModifyingDocuments.normalization(
document=document,
remove_non_printing_characters=False,
strip=True,
lower_case=False,
uniform_whitespace=cond_uniform_whitespace,
replace_digits_with_zeros=False,
replace_unicode_punctuation=cond_replace_unicode_punctuation,
)
if cond_remove_words_with_incorrect_substrings:
document = ModifyingDocuments.remove_words_with_incorrect_substrings(
document,
strip_characters,
incorrect_word_substrings,
)
if cond_remove_long_words:
document = ModifyingDocuments.remove_long_words(
document,
strip_characters,
length_word_max_cutoff,
)
return document
class FunctionDatasetModifyingDocuments:
def __init__(self, lang_dataset_id):
self.lang_dataset_id = lang_dataset_id
self.param = LoadParameters.load_parameters(lang_dataset_id)
def __call__(self, example):
example["text"] = ModifyingDocuments.modifying_documents(
document=example["text"],
cond_uniform_whitespace=self.param["cond_uniform_whitespace"],
cond_replace_unicode_punctuation=self.param[
"cond_replace_unicode_punctuation"
],
cond_remove_words_with_incorrect_substrings=self.param[
"cond_remove_words_with_incorrect_substrings"
],
strip_characters=self.param["strip_characters"],
incorrect_word_substrings=self.param["incorrect_word_substrings"],
cond_remove_long_words=self.param["cond_remove_long_words"],
length_word_max_cutoff=self.param["length_word_max_cutoff"],
)
return example
def __reduce__(self):
return (self.__class__, (self.lang_dataset_id,))
class Filtering:
@staticmethod
def check_number_words(
document,
sentencepiece_model_tok,
strip_characters,
number_words_min_cutoff,
number_words_max_cutoff,
):
words = ModifyingDocuments.get_words_from_document(
document,
sentencepiece_model_tok,
lower_case=False,
strip_characters=strip_characters,
)
cond = (len(words) >= number_words_min_cutoff) and (
len(words) <= number_words_max_cutoff
)
return cond
@staticmethod
def compute_repetitions_ratio(document, repetitions_length):
def get_freq_ngrams(document, n):
ngrams = [document[i : i + n] for i in range(len(document) - n + 1)]
freq_ngrams = {}
for ngram in ngrams:
freq_ngrams[ngram] = freq_ngrams.get(ngram, 0) + 1
return freq_ngrams
freq_ngrams = get_freq_ngrams(document, repetitions_length)
if len(freq_ngrams) == 0:
return 0
freq_ngrams = list(freq_ngrams.values())
freq_ngrams = sorted(freq_ngrams, reverse=True)
num_rep_ngrams = int(np.sqrt(len(freq_ngrams)))
repetitions_ratio = sum(freq_ngrams[:num_rep_ngrams]) / sum(freq_ngrams)
return repetitions_ratio
@staticmethod
def check_repetitions_removal(
document,
repetitions_length,
repetitions_max_cutoff,
):
repetitions_ratio = Filtering.compute_repetitions_ratio(
document, repetitions_length
)
cond = repetitions_ratio <= repetitions_max_cutoff
return cond
@staticmethod
def compute_special_characters_ratio(document, special_characters):
if len(document) == 0:
return 0
special_characters_ratio = len(
[char for char in document if char in special_characters]
) / len(document)
return special_characters_ratio
@staticmethod
def check_special_characters(
document,
special_characters,
special_characters_max_cutoff,
):
special_characters_ratio = Filtering.compute_special_characters_ratio(
document, special_characters
)
cond = special_characters_ratio <= special_characters_max_cutoff
return cond
@staticmethod
def compute_stopwords_ratio(
document,
sentencepiece_model_tok,
strip_characters,
cond_words_augmentation,
words_augmentation_group_sizes,
words_augmentation_join_char,
stopwords,
):
words = ModifyingDocuments.get_words_from_document(
document,
sentencepiece_model_tok,
lower_case=True,
strip_characters=strip_characters,
)
if not words:
return 0
augmentation = []
if cond_words_augmentation:
augmentation = [
ModifyingDocuments.words_augmentation(
words, group_size, words_augmentation_join_char
)
for group_size in words_augmentation_group_sizes
]
augmentation = [word for augm in augmentation for word in augm]
stopwords_ratio = len(
[word for word in words + augmentation if word in stopwords]
) / len(words)
if stopwords_ratio > 1.0:
stopwords_ratio = 1.0
return stopwords_ratio
@staticmethod
def check_stopwords(
document,
sentencepiece_model_tok,
strip_characters,
cond_words_augmentation,
words_augmentation_group_sizes,
words_augmentation_join_char,
stopwords,
stopwords_min_cutoff,
):
cond = True
if stopwords:
stopwords_ratio = Filtering.compute_stopwords_ratio(
document,
sentencepiece_model_tok,
strip_characters,
cond_words_augmentation,
words_augmentation_group_sizes,
words_augmentation_join_char,
stopwords,
)
cond = stopwords_ratio >= stopwords_min_cutoff
return cond
@staticmethod
def compute_flagged_words_ratio(
document,
sentencepiece_model_tok,
strip_characters,
cond_words_augmentation,
words_augmentation_group_sizes,
words_augmentation_join_char,
flagged_words,
):
words = ModifyingDocuments.get_words_from_document(
document,
sentencepiece_model_tok,
lower_case=True,
strip_characters=strip_characters,
)
if not words:
return 0
augmentation = []
if cond_words_augmentation:
augmentation = [
ModifyingDocuments.words_augmentation(
words, group_size, words_augmentation_join_char
)
for group_size in words_augmentation_group_sizes
]
augmentation = [word for augm in augmentation for word in augm]
flagged_words_ratio = len(
[word for word in words + augmentation if word in flagged_words]
) / len(words)
if flagged_words_ratio > 1.0:
flagged_words_ratio = 1.0
return flagged_words_ratio
@staticmethod
def check_flagged_words(
document,
sentencepiece_model_tok,
strip_characters,
cond_words_augmentation,
words_augmentation_group_sizes,
words_augmentation_join_char,
flagged_words,
flagged_words_max_cutoff,
):
cond = True
if flagged_words:
flagged_words_ratio = Filtering.compute_flagged_words_ratio(
document,
sentencepiece_model_tok,
strip_characters,
cond_words_augmentation,
words_augmentation_group_sizes,
words_augmentation_join_char,
flagged_words,
)
cond = flagged_words_ratio <= flagged_words_max_cutoff
return cond
@staticmethod
def compute_lang_id_pred_score(document, model_lang_id):
document = document.lower().replace("\n", " ")
pred = model_lang_id.predict(document)
lang_pred_fasttext_id = pred[0][0].replace("__label__", "")
score_pred = pred[1][0]
lang_pred_dataset_id = langs_id.loc[
langs_id["fasttext_id"] == lang_pred_fasttext_id, "dataset_id"
]
if len(lang_pred_dataset_id) > 0:
lang_pred_dataset_id = lang_pred_dataset_id.iloc[0]
else:
lang_pred_dataset_id = "unknown"
return lang_pred_dataset_id, score_pred
@staticmethod
def check_lang_id(
document,
lang_dataset_id,
model_lang_id,
lang_id_min_cutoff,
):
cond = True
if model_lang_id:
lang_pred_dataset_id, score_pred = Filtering.compute_lang_id_pred_score(
document, model_lang_id
)
cond = (lang_pred_dataset_id == lang_dataset_id) and (
score_pred >= lang_id_min_cutoff
)
return cond
@staticmethod
def compute_perplexity_score(document, sentencepiece_model, kenlm_model):
document = ModifyingDocuments.normalization(
document=document,
remove_non_printing_characters=True,
strip=True,
lower_case=True,
uniform_whitespace=True,
replace_digits_with_zeros=True,
replace_unicode_punctuation=True,
)
document = ModifyingDocuments.tokenization(
document, sentencepiece_model, join_on_whitespace=True
)
doc_log_score, doc_length = 0, 0
for line in document.split("\n"):
log_score = kenlm_model.score(line)
length = len(line.split()) + 1
doc_log_score += log_score
doc_length += length
pp_score = 10.0 ** (-doc_log_score / doc_length)
pp_score = round(pp_score, 1)
return pp_score
@staticmethod
def check_perplexity(
document,
sentencepiece_model,
kenlm_model,
perplexity_max_cutoff,
):
cond = True
if kenlm_model:
score = Filtering.compute_perplexity_score(
document, sentencepiece_model, kenlm_model
)
cond = score <= perplexity_max_cutoff
return cond
@staticmethod
def filtering(
document,
cond_check_number_words,
sentencepiece_model_tok,
strip_characters,
number_words_min_cutoff,
number_words_max_cutoff,
cond_check_repetitions_removal,
repetitions_length,
repetitions_max_cutoff,
cond_check_special_characters,
special_characters,
special_characters_max_cutoff,
cond_words_augmentation,
words_augmentation_group_sizes,
words_augmentation_join_char,
cond_check_stopwords,
stopwords,
stopwords_min_cutoff,
cond_check_flagged_words,
flagged_words,
flagged_words_max_cutoff,
cond_check_lang_id,
lang_dataset_id,
model_lang_id,
lang_id_min_cutoff,
cond_check_perplexity,
sentencepiece_model,
kenlm_model,
perplexity_max_cutoff,
):
if cond_check_number_words:
if not Filtering.check_number_words(
document,
sentencepiece_model_tok,
strip_characters,
number_words_min_cutoff,
number_words_max_cutoff,
):
return False
if cond_check_repetitions_removal:
if not Filtering.check_repetitions_removal(
document,
repetitions_length,
repetitions_max_cutoff,
):
return False
if cond_check_special_characters:
if not Filtering.check_special_characters(
document,
special_characters,
special_characters_max_cutoff,
):
return False
if cond_check_stopwords:
if not Filtering.check_stopwords(
document,
sentencepiece_model_tok,
strip_characters,
cond_words_augmentation,
words_augmentation_group_sizes,
words_augmentation_join_char,
stopwords,
stopwords_min_cutoff,
):
return False
if cond_check_flagged_words:
if not Filtering.check_flagged_words(
document,
sentencepiece_model_tok,
strip_characters,
cond_words_augmentation,
words_augmentation_group_sizes,
words_augmentation_join_char,
flagged_words,
flagged_words_max_cutoff,
):
return False
if cond_check_lang_id:
if not Filtering.check_lang_id(
document,
lang_dataset_id,
model_lang_id,
lang_id_min_cutoff,
):
return False
if cond_check_perplexity:
if not Filtering.check_perplexity(
document,
sentencepiece_model,
kenlm_model,
perplexity_max_cutoff,
):
return False
return True
class FunctionDatasetFiltering:
def __init__(
self,
lang_dataset_id,
path_fasttext_model,
path_sentencepiece_model,
path_kenlm_model,
):
self.lang_dataset_id = lang_dataset_id
self.path_fasttext_model = path_fasttext_model
self.path_sentencepiece_model = path_sentencepiece_model
self.path_kenlm_model = path_kenlm_model
self.param = LoadParameters.load_parameters(lang_dataset_id)
self.stopwords = LoadParameters.load_stopwords(lang_dataset_id)
self.flagged_words = LoadParameters.load_flagged_words(lang_dataset_id)
self.model_lang_id = LoadParameters.load_model_lang_id(
lang_dataset_id, path_fasttext_model
)
self.sentencepiece_model = LoadParameters.load_sentencepiece_model(
lang_dataset_id, path_sentencepiece_model
)
self.sentencepiece_model_tok = (
self.sentencepiece_model if self.param["tokenization"] else None
)
self.kenlm_model = LoadParameters.load_kenlm_model(
lang_dataset_id, path_kenlm_model
)
def __call__(self, example):
keep_example = Filtering.filtering(
document=example["text"],
cond_check_number_words=self.param["cond_check_number_words"],
sentencepiece_model_tok=self.sentencepiece_model_tok,
strip_characters=self.param["strip_characters"],
number_words_min_cutoff=self.param["number_words_min_cutoff"],
number_words_max_cutoff=self.param["number_words_max_cutoff"],
cond_check_repetitions_removal=self.param["check_repetitions_removal"],
repetitions_length=self.param["repetitions_length"],
repetitions_max_cutoff=self.param["repetitions_max_cutoff"],
cond_check_special_characters=self.param["cond_check_special_characters"],
special_characters=self.param["special_characters"],
special_characters_max_cutoff=self.param["special_characters_max_cutoff"],
cond_words_augmentation=self.param["cond_words_augmentation"],
words_augmentation_group_sizes=self.param["words_augmentation_group_sizes"],
words_augmentation_join_char=self.param["words_augmentation_join_char"],
cond_check_stopwords=self.param["cond_check_stopwords"],
stopwords=self.stopwords,
stopwords_min_cutoff=self.param["stopwords_min_cutoff"],
cond_check_flagged_words=self.param["cond_check_flagged_words"],
flagged_words=self.flagged_words,
flagged_words_max_cutoff=self.param["flagged_words_max_cutoff"],
cond_check_lang_id=self.param["cond_check_lang_id"],
lang_dataset_id=self.lang_dataset_id,
model_lang_id=self.model_lang_id,
lang_id_min_cutoff=self.param["lang_id_min_cutoff"],
cond_check_perplexity=self.param["cond_check_perplexity"],
sentencepiece_model=self.sentencepiece_model,
kenlm_model=self.kenlm_model,
perplexity_max_cutoff=self.param["perplexity_max_cutoff"],
)
return keep_example
def __reduce__(self):
return (
self.__class__,
(
self.lang_dataset_id,
self.path_fasttext_model,
self.path_sentencepiece_model,
self.path_kenlm_model,
),
)
class DatasetFiltering:
def __init__(
self,
dataset,
lang_dataset_id,
path_fasttext_model,
path_sentencepiece_model,
path_kenlm_model,
num_proc,
path_dir_save_dataset,
):
self.ds = dataset
self.lang_dataset_id = lang_dataset_id
self.path_fasttext_model = path_fasttext_model
self.path_sentencepiece_model = path_sentencepiece_model
self.path_kenlm_model = path_kenlm_model
self.num_proc = num_proc
self.path_dir_save_dataset = path_dir_save_dataset
def modifying_documents(self):
dataset_modifying_documents = FunctionDatasetModifyingDocuments(
self.lang_dataset_id
)
self.ds = self.ds.map(dataset_modifying_documents, num_proc=self.num_proc)
def filtering(self):
func_dataset_filtering = FunctionDatasetFiltering(
self.lang_dataset_id,
self.path_fasttext_model,
self.path_sentencepiece_model,
self.path_kenlm_model,
)
self.ds = self.ds.filter(func_dataset_filtering, num_proc=self.num_proc)
def save_dataset(self):
pathlib.Path(self.path_dir_save_dataset).mkdir(parents=True, exist_ok=True)
path_dir_save_dataset = pathlib.PurePath(
self.path_dir_save_dataset, self.lang_dataset_id
)
pathlib.Path(path_dir_save_dataset).mkdir(parents=True, exist_ok=True)
self.ds.save_to_disk(path_dir_save_dataset)
|