File size: 30,633 Bytes
d1e3e7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f217a73
d1e3e7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f217a73
 
 
d1e3e7b
f217a73
 
d1e3e7b
f217a73
 
d1e3e7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b607b76
 
d1e3e7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f217a73
d1e3e7b
 
 
 
 
 
f217a73
d1e3e7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f217a73
 
d1e3e7b
f217a73
 
 
d1e3e7b
 
f217a73
d1e3e7b
 
 
 
 
 
f217a73
 
d1e3e7b
 
f217a73
 
d1e3e7b
 
 
 
 
 
f217a73
d1e3e7b
f217a73
d1e3e7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f217a73
 
 
d1e3e7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f217a73
 
d1e3e7b
 
 
 
 
 
f217a73
 
d1e3e7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f217a73
d1e3e7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f217a73
 
 
d1e3e7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
import re

import numpy as np

import fasttext

import sentencepiece
import kenlm

import pathlib

from languages_id import langs_id
from parameters_filtering import parameters_filtering
from normalization import normalization
from stopwords import stopwords
from flagged_words import flagged_words


class LoadParameters:
    @staticmethod
    def load_parameters(lang_dataset_id):
        if lang_dataset_id in parameters_filtering:
            param = parameters_filtering[lang_dataset_id]
        else:
            param = parameters_filtering["default"]
        return param

    @staticmethod
    def load_stopwords(lang_dataset_id):
        stopwords_lang_id = langs_id.loc[
            langs_id["dataset_id"] == lang_dataset_id, "stopwords_id"
        ].iloc[0]
        if stopwords_lang_id:
            stopwords_lang = set(stopwords[stopwords_lang_id])
        else:
            stopwords_lang = None
        return stopwords_lang

    @staticmethod
    def load_flagged_words(lang_dataset_id):
        flagged_words_lang_id = langs_id.loc[
            langs_id["dataset_id"] == lang_dataset_id, "flagged_words_id"
        ].iloc[0]
        if flagged_words_lang_id:
            flagged_words_lang = set(flagged_words[flagged_words_lang_id])
        else:
            flagged_words_lang = None
        return flagged_words_lang

    @staticmethod
    def load_model_lang_id(lang_dataset_id, path_fasttext_model):
        fasttext_lang_id = langs_id.loc[
            langs_id["dataset_id"] == lang_dataset_id, "fasttext_id"
        ].iloc[0]
        if fasttext_lang_id:
            model_lang_id = fasttext.load_model(path_fasttext_model)
        else:
            model_lang_id = None
        return model_lang_id

    @staticmethod
    def load_sentencepiece_model(lang_dataset_id, path_sentencepiece_model):
        sentencepiece_lang_id = langs_id.loc[
            langs_id["dataset_id"] == lang_dataset_id, "sentencepiece_id"
        ].iloc[0]
        if sentencepiece_lang_id:
            sentencepiece_model = sentencepiece.SentencePieceProcessor()
            sentencepiece_model.load(path_sentencepiece_model)
        else:
            sentencepiece_model = None
        return sentencepiece_model

    @staticmethod
    def load_kenlm_model(lang_dataset_id, path_kenlm_model):
        kenlm_lang_id = langs_id.loc[
            langs_id["dataset_id"] == lang_dataset_id, "kenlm_id"
        ].iloc[0]
        if kenlm_lang_id:
            kenlm_model = kenlm.Model(path_kenlm_model)
        else:
            kenlm_model = None
        return kenlm_model


class ModifyingDocuments:
    @staticmethod
    def remove_empty_el_from_list(list_):
        return [el for el in list_ if el]

    @staticmethod
    def remove_non_printing_characters(document, non_printing_characters_re):
        return non_printing_characters_re.sub("", document)

    @staticmethod
    def uniform_whitespace(
        document,
        whitespace=[
            " ",
            " ",
            "β€Š",
            "β€―",
            "β€…",
            "γ€€",
            " ",
            "Β ",
            "β€ˆ",
            " ",
            "οΏΌ",
            "Β„",
        ],
    ):
        """There are different whitespace characters."""
        whitespace = set(whitespace)
        document = "".join(
            [char if char not in whitespace else " " for char in document]
        )
        return document

    @staticmethod
    def replace_digits_with_zeros(document, digits_re):
        return digits_re.sub("0", document)

    @staticmethod
    def replace_unicode_punctuation(document, unicode_punctuation):
        return "".join(unicode_punctuation.get(c, c) for c in document)

    @staticmethod
    def normalization(
        document,
        remove_non_printing_characters,
        strip,
        lower_case,
        uniform_whitespace,
        replace_digits_with_zeros,
        replace_unicode_punctuation,
        non_printing_characters_re=normalization["non_printing_characters_re"],
        digits_re=normalization["digits_re"],
        unicode_punctuation=normalization["unicode_punctuation"],
    ):
        if remove_non_printing_characters:
            document = ModifyingDocuments.remove_non_printing_characters(
                document, non_printing_characters_re
            )
        if strip:
            document = document.strip()
        if not document:
            return document
        if lower_case:
            document = document.lower()
        if uniform_whitespace:
            document = ModifyingDocuments.uniform_whitespace(document)
        if replace_digits_with_zeros:
            document = ModifyingDocuments.replace_digits_with_zeros(document, digits_re)
        if replace_unicode_punctuation:
            document = ModifyingDocuments.replace_unicode_punctuation(
                document, unicode_punctuation
            )
        return document

    @staticmethod
    def tokenization(document, sentencepiece_model, join_on_whitespace):
        document_tokenized = sentencepiece_model.encode_as_pieces(document)
        if join_on_whitespace:
            document_tokenized = " ".join(document_tokenized)
        return document_tokenized

    @staticmethod
    def split_on_whitespace(
        document,
        new_line=False,
        tab=False,
    ):
        """This method also removes concatenated spaces."""
        sep = [" "] + new_line * ["\n"] + tab * ["\t"]
        sep = "|".join(sep)
        split_document = re.split(sep, document)
        split_document = ModifyingDocuments.remove_empty_el_from_list(split_document)
        return split_document

    @staticmethod
    def strip(document, strip_characters):
        """Way faster than document.strip(strip_characters)
        since strip_characters is now a set instead of a str,
        and it contains a lot of elements (all the emojis)."""
        if not document:
            return document
        beg_ind = 0
        end_ind = len(document)
        for i in range(len(document)):
            if document[i] in strip_characters:
                beg_ind += 1
            else:
                break
        for i in range(1, len(document) + 1):
            if document[-i] in strip_characters:
                end_ind -= 1
            else:
                break
        document_stripped = document[beg_ind:end_ind]
        return document_stripped

    @staticmethod
    def get_words_from_document(
        document, sentencepiece_model_tok, lower_case, strip_characters
    ):
        """Get words from a document. Non reversible since the document
        is split on multiple characters, words are stripped of
        special characters and characters are converted to lower case.
        Useful to compute ratios, like the stopwords ratio."""
        if sentencepiece_model_tok:
            document_normalized = ModifyingDocuments.normalization(
                document=document,
                remove_non_printing_characters=True,
                strip=True,
                lower_case=True,
                uniform_whitespace=True,
                replace_digits_with_zeros=True,
                replace_unicode_punctuation=True,
            )
            words = ModifyingDocuments.tokenization(
                document_normalized, sentencepiece_model_tok, join_on_whitespace=False
            )
        else:
            words = ModifyingDocuments.split_on_whitespace(
                document, new_line=True, tab=True
            )
        if lower_case:
            words = [word.lower() for word in words]
        if strip_characters:
            words = [ModifyingDocuments.strip(word, strip_characters) for word in words]
            words = ModifyingDocuments.remove_empty_el_from_list(words)
        return words

    @staticmethod
    def words_augmentation(words, group_size, join_char):
        """Augment words, especially for Chinese (without a space between words)
        and Vietnamese (with a space between syllables)."""
        augmentation = [
            join_char.join(words[i : i + group_size])
            for i in range(len(words) - group_size + 1)
        ]
        return augmentation

    @staticmethod
    def split_on_newline_tab_whitespace(document):
        """First split on "\n", then on "\t", then on " "."""
        sentences = document.split("\n")
        sentences = [sentence.split("\t") for sentence in sentences]
        sentences = [
            [
                ModifyingDocuments.split_on_whitespace(subsentence)
                for subsentence in sentence
            ]
            for sentence in sentences
        ]
        return sentences

    @staticmethod
    def merge_on_whitespace_tab_newline(sentences):
        """Invert the method split_on_newline_tab_whitespace.
        Removes concatenated separators."""
        sentences = [
            [" ".join(subsentence) for subsentence in sentence if subsentence]
            for sentence in sentences
        ]
        sentences = ["\t".join(sentence) for sentence in sentences if sentence]
        if not sentences:
            return ""
        document = "\n".join(sentences)
        return document

    @staticmethod
    def should_keep_word_with_incorrect_substrings(
        word, strip_characters, incorrect_word_substrings
    ):
        word = ModifyingDocuments.strip(word, strip_characters)
        should_keep = all(
            [(i_substr not in word) for i_substr in incorrect_word_substrings]
        )
        return should_keep

    @staticmethod
    def remove_words_with_incorrect_substrings(
        document,
        strip_characters,
        incorrect_word_substrings,
    ):
        sentences = ModifyingDocuments.split_on_newline_tab_whitespace(document)
        sentences = [
            [
                [
                    word
                    for word in subsentence
                    if ModifyingDocuments.should_keep_word_with_incorrect_substrings(
                        word, strip_characters, incorrect_word_substrings
                    )
                ]
                for subsentence in sentence
            ]
            for sentence in sentences
        ]
        document = ModifyingDocuments.merge_on_whitespace_tab_newline(sentences)
        return document

    @staticmethod
    def should_keep_long_word(word, strip_characters, length_word_max_cutoff):
        """If the word is too long but it contains only one
        special character, it might be a concatenation of one word,
        a punctuation, and another word, with no space between them.
        In this case, we give the word a pass."""
        if len(word) <= length_word_max_cutoff:
            return True
        word = ModifyingDocuments.strip(word, strip_characters)
        if not word:  # The word consisted only of strip characters
            return False
        if len(word) <= length_word_max_cutoff:
            return True
        return False

    def remove_long_words(
        document,
        strip_characters,
        length_word_max_cutoff,
    ):
        sentences = ModifyingDocuments.split_on_newline_tab_whitespace(document)
        sentences = [
            [
                [
                    word
                    for word in subsentence
                    if ModifyingDocuments.should_keep_long_word(
                        word,
                        strip_characters,
                        length_word_max_cutoff,
                    )
                ]
                for subsentence in sentence
            ]
            for sentence in sentences
        ]
        document = ModifyingDocuments.merge_on_whitespace_tab_newline(sentences)
        return document

    @staticmethod
    def modifying_documents(
        document,
        cond_uniform_whitespace,
        cond_replace_unicode_punctuation,
        cond_remove_words_with_incorrect_substrings,
        strip_characters,
        incorrect_word_substrings,
        cond_remove_long_words,
        length_word_max_cutoff,
    ):
        document = ModifyingDocuments.normalization(
            document=document,
            remove_non_printing_characters=False,
            strip=True,
            lower_case=False,
            uniform_whitespace=cond_uniform_whitespace,
            replace_digits_with_zeros=False,
            replace_unicode_punctuation=cond_replace_unicode_punctuation,
        )
        if cond_remove_words_with_incorrect_substrings:
            document = ModifyingDocuments.remove_words_with_incorrect_substrings(
                document,
                strip_characters,
                incorrect_word_substrings,
            )
        if cond_remove_long_words:
            document = ModifyingDocuments.remove_long_words(
                document,
                strip_characters,
                length_word_max_cutoff,
            )
        return document


class FunctionDatasetModifyingDocuments:
    def __init__(self, lang_dataset_id):
        self.lang_dataset_id = lang_dataset_id
        self.param = LoadParameters.load_parameters(lang_dataset_id)

    def __call__(self, example):
        example["text"] = ModifyingDocuments.modifying_documents(
            document=example["text"],
            cond_uniform_whitespace=self.param["cond_uniform_whitespace"],
            cond_replace_unicode_punctuation=self.param[
                "cond_replace_unicode_punctuation"
            ],
            cond_remove_words_with_incorrect_substrings=self.param[
                "cond_remove_words_with_incorrect_substrings"
            ],
            strip_characters=self.param["strip_characters"],
            incorrect_word_substrings=self.param["incorrect_word_substrings"],
            cond_remove_long_words=self.param["cond_remove_long_words"],
            length_word_max_cutoff=self.param["length_word_max_cutoff"],
        )
        return example

    def __reduce__(self):
        return (self.__class__, (self.lang_dataset_id,))


class Filtering:
    @staticmethod
    def check_number_words(
        document,
        sentencepiece_model_tok,
        strip_characters,
        number_words_min_cutoff,
        number_words_max_cutoff,
    ):
        words = ModifyingDocuments.get_words_from_document(
            document,
            sentencepiece_model_tok,
            lower_case=False,
            strip_characters=strip_characters,
        )
        cond = (len(words) >= number_words_min_cutoff) and (
            len(words) <= number_words_max_cutoff
        )
        return cond

    @staticmethod
    def compute_repetitions_ratio(document, repetitions_length):
        def get_freq_ngrams(document, n):
            ngrams = [document[i : i + n] for i in range(len(document) - n + 1)]
            freq_ngrams = {}
            for ngram in ngrams:
                freq_ngrams[ngram] = freq_ngrams.get(ngram, 0) + 1
            return freq_ngrams

        freq_ngrams = get_freq_ngrams(document, repetitions_length)
        if len(freq_ngrams) == 0:
            return 0
        freq_ngrams = list(freq_ngrams.values())
        freq_ngrams = sorted(freq_ngrams, reverse=True)
        num_rep_ngrams = int(np.sqrt(len(freq_ngrams)))
        repetitions_ratio = sum(freq_ngrams[:num_rep_ngrams]) / sum(freq_ngrams)
        return repetitions_ratio

    @staticmethod
    def check_repetitions_removal(
        document,
        repetitions_length,
        repetitions_max_cutoff,
    ):
        repetitions_ratio = Filtering.compute_repetitions_ratio(
            document, repetitions_length
        )
        cond = repetitions_ratio <= repetitions_max_cutoff
        return cond

    @staticmethod
    def compute_special_characters_ratio(document, special_characters):
        if len(document) == 0:
            return 0
        special_characters_ratio = len(
            [char for char in document if char in special_characters]
        ) / len(document)
        return special_characters_ratio

    @staticmethod
    def check_special_characters(
        document,
        special_characters,
        special_characters_max_cutoff,
    ):
        special_characters_ratio = Filtering.compute_special_characters_ratio(
            document, special_characters
        )
        cond = special_characters_ratio <= special_characters_max_cutoff
        return cond

    @staticmethod
    def compute_stopwords_ratio(
        document,
        sentencepiece_model_tok,
        strip_characters,
        cond_words_augmentation,
        words_augmentation_group_sizes,
        words_augmentation_join_char,
        stopwords,
    ):
        words = ModifyingDocuments.get_words_from_document(
            document,
            sentencepiece_model_tok,
            lower_case=True,
            strip_characters=strip_characters,
        )
        if not words:
            return 0
        augmentation = []
        if cond_words_augmentation:
            augmentation = [
                ModifyingDocuments.words_augmentation(
                    words, group_size, words_augmentation_join_char
                )
                for group_size in words_augmentation_group_sizes
            ]
            augmentation = [word for augm in augmentation for word in augm]
        stopwords_ratio = len(
            [word for word in words + augmentation if word in stopwords]
        ) / len(words)
        if stopwords_ratio > 1.0:
            stopwords_ratio = 1.0
        return stopwords_ratio

    @staticmethod
    def check_stopwords(
        document,
        sentencepiece_model_tok,
        strip_characters,
        cond_words_augmentation,
        words_augmentation_group_sizes,
        words_augmentation_join_char,
        stopwords,
        stopwords_min_cutoff,
    ):
        cond = True
        if stopwords:
            stopwords_ratio = Filtering.compute_stopwords_ratio(
                document,
                sentencepiece_model_tok,
                strip_characters,
                cond_words_augmentation,
                words_augmentation_group_sizes,
                words_augmentation_join_char,
                stopwords,
            )
            cond = stopwords_ratio >= stopwords_min_cutoff
        return cond

    @staticmethod
    def compute_flagged_words_ratio(
        document,
        sentencepiece_model_tok,
        strip_characters,
        cond_words_augmentation,
        words_augmentation_group_sizes,
        words_augmentation_join_char,
        flagged_words,
    ):
        words = ModifyingDocuments.get_words_from_document(
            document,
            sentencepiece_model_tok,
            lower_case=True,
            strip_characters=strip_characters,
        )
        if not words:
            return 0
        augmentation = []
        if cond_words_augmentation:
            augmentation = [
                ModifyingDocuments.words_augmentation(
                    words, group_size, words_augmentation_join_char
                )
                for group_size in words_augmentation_group_sizes
            ]
            augmentation = [word for augm in augmentation for word in augm]
        flagged_words_ratio = len(
            [word for word in words + augmentation if word in flagged_words]
        ) / len(words)
        if flagged_words_ratio > 1.0:
            flagged_words_ratio = 1.0
        return flagged_words_ratio

    @staticmethod
    def check_flagged_words(
        document,
        sentencepiece_model_tok,
        strip_characters,
        cond_words_augmentation,
        words_augmentation_group_sizes,
        words_augmentation_join_char,
        flagged_words,
        flagged_words_max_cutoff,
    ):
        cond = True
        if flagged_words:
            flagged_words_ratio = Filtering.compute_flagged_words_ratio(
                document,
                sentencepiece_model_tok,
                strip_characters,
                cond_words_augmentation,
                words_augmentation_group_sizes,
                words_augmentation_join_char,
                flagged_words,
            )
            cond = flagged_words_ratio <= flagged_words_max_cutoff
        return cond

    @staticmethod
    def compute_lang_id_pred_score(document, model_lang_id):
        document = document.lower().replace("\n", " ")
        pred = model_lang_id.predict(document)
        lang_pred_fasttext_id = pred[0][0].replace("__label__", "")
        score_pred = pred[1][0]
        lang_pred_dataset_id = langs_id.loc[
            langs_id["fasttext_id"] == lang_pred_fasttext_id, "dataset_id"
        ]
        if len(lang_pred_dataset_id) > 0:
            lang_pred_dataset_id = lang_pred_dataset_id.iloc[0]
        else:
            lang_pred_dataset_id = "unknown"
        return lang_pred_dataset_id, score_pred

    @staticmethod
    def check_lang_id(
        document,
        lang_dataset_id,
        model_lang_id,
        lang_id_min_cutoff,
    ):
        cond = True
        if model_lang_id:
            lang_pred_dataset_id, score_pred = Filtering.compute_lang_id_pred_score(
                document, model_lang_id
            )
            cond = (lang_pred_dataset_id == lang_dataset_id) and (
                score_pred >= lang_id_min_cutoff
            )
        return cond

    @staticmethod
    def compute_perplexity_score(document, sentencepiece_model, kenlm_model):
        document = ModifyingDocuments.normalization(
            document=document,
            remove_non_printing_characters=True,
            strip=True,
            lower_case=True,
            uniform_whitespace=True,
            replace_digits_with_zeros=True,
            replace_unicode_punctuation=True,
        )
        document = ModifyingDocuments.tokenization(
            document, sentencepiece_model, join_on_whitespace=True
        )
        doc_log_score, doc_length = 0, 0
        for line in document.split("\n"):
            log_score = kenlm_model.score(line)
            length = len(line.split()) + 1
            doc_log_score += log_score
            doc_length += length
        pp_score = 10.0 ** (-doc_log_score / doc_length)
        pp_score = round(pp_score, 1)
        return pp_score

    @staticmethod
    def check_perplexity(
        document,
        sentencepiece_model,
        kenlm_model,
        perplexity_max_cutoff,
    ):
        cond = True
        if kenlm_model:
            score = Filtering.compute_perplexity_score(
                document, sentencepiece_model, kenlm_model
            )
            cond = score <= perplexity_max_cutoff
        return cond

    @staticmethod
    def filtering(
        document,
        cond_check_number_words,
        sentencepiece_model_tok,
        strip_characters,
        number_words_min_cutoff,
        number_words_max_cutoff,
        cond_check_repetitions_removal,
        repetitions_length,
        repetitions_max_cutoff,
        cond_check_special_characters,
        special_characters,
        special_characters_max_cutoff,
        cond_words_augmentation,
        words_augmentation_group_sizes,
        words_augmentation_join_char,
        cond_check_stopwords,
        stopwords,
        stopwords_min_cutoff,
        cond_check_flagged_words,
        flagged_words,
        flagged_words_max_cutoff,
        cond_check_lang_id,
        lang_dataset_id,
        model_lang_id,
        lang_id_min_cutoff,
        cond_check_perplexity,
        sentencepiece_model,
        kenlm_model,
        perplexity_max_cutoff,
    ):
        if cond_check_number_words:
            if not Filtering.check_number_words(
                document,
                sentencepiece_model_tok,
                strip_characters,
                number_words_min_cutoff,
                number_words_max_cutoff,
            ):
                return False
        if cond_check_repetitions_removal:
            if not Filtering.check_repetitions_removal(
                document,
                repetitions_length,
                repetitions_max_cutoff,
            ):
                return False
        if cond_check_special_characters:
            if not Filtering.check_special_characters(
                document,
                special_characters,
                special_characters_max_cutoff,
            ):
                return False
        if cond_check_stopwords:
            if not Filtering.check_stopwords(
                document,
                sentencepiece_model_tok,
                strip_characters,
                cond_words_augmentation,
                words_augmentation_group_sizes,
                words_augmentation_join_char,
                stopwords,
                stopwords_min_cutoff,
            ):
                return False
        if cond_check_flagged_words:
            if not Filtering.check_flagged_words(
                document,
                sentencepiece_model_tok,
                strip_characters,
                cond_words_augmentation,
                words_augmentation_group_sizes,
                words_augmentation_join_char,
                flagged_words,
                flagged_words_max_cutoff,
            ):
                return False
        if cond_check_lang_id:
            if not Filtering.check_lang_id(
                document,
                lang_dataset_id,
                model_lang_id,
                lang_id_min_cutoff,
            ):
                return False
        if cond_check_perplexity:
            if not Filtering.check_perplexity(
                document,
                sentencepiece_model,
                kenlm_model,
                perplexity_max_cutoff,
            ):
                return False
        return True


class FunctionDatasetFiltering:
    def __init__(
        self,
        lang_dataset_id,
        path_fasttext_model,
        path_sentencepiece_model,
        path_kenlm_model,
    ):
        self.lang_dataset_id = lang_dataset_id
        self.path_fasttext_model = path_fasttext_model
        self.path_sentencepiece_model = path_sentencepiece_model
        self.path_kenlm_model = path_kenlm_model

        self.param = LoadParameters.load_parameters(lang_dataset_id)
        self.stopwords = LoadParameters.load_stopwords(lang_dataset_id)
        self.flagged_words = LoadParameters.load_flagged_words(lang_dataset_id)
        self.model_lang_id = LoadParameters.load_model_lang_id(
            lang_dataset_id, path_fasttext_model
        )
        self.sentencepiece_model = LoadParameters.load_sentencepiece_model(
            lang_dataset_id, path_sentencepiece_model
        )
        self.sentencepiece_model_tok = (
            self.sentencepiece_model if self.param["tokenization"] else None
        )
        self.kenlm_model = LoadParameters.load_kenlm_model(
            lang_dataset_id, path_kenlm_model
        )

    def __call__(self, example):
        keep_example = Filtering.filtering(
            document=example["text"],
            cond_check_number_words=self.param["cond_check_number_words"],
            sentencepiece_model_tok=self.sentencepiece_model_tok,
            strip_characters=self.param["strip_characters"],
            number_words_min_cutoff=self.param["number_words_min_cutoff"],
            number_words_max_cutoff=self.param["number_words_max_cutoff"],
            cond_check_repetitions_removal=self.param["check_repetitions_removal"],
            repetitions_length=self.param["repetitions_length"],
            repetitions_max_cutoff=self.param["repetitions_max_cutoff"],
            cond_check_special_characters=self.param["cond_check_special_characters"],
            special_characters=self.param["special_characters"],
            special_characters_max_cutoff=self.param["special_characters_max_cutoff"],
            cond_words_augmentation=self.param["cond_words_augmentation"],
            words_augmentation_group_sizes=self.param["words_augmentation_group_sizes"],
            words_augmentation_join_char=self.param["words_augmentation_join_char"],
            cond_check_stopwords=self.param["cond_check_stopwords"],
            stopwords=self.stopwords,
            stopwords_min_cutoff=self.param["stopwords_min_cutoff"],
            cond_check_flagged_words=self.param["cond_check_flagged_words"],
            flagged_words=self.flagged_words,
            flagged_words_max_cutoff=self.param["flagged_words_max_cutoff"],
            cond_check_lang_id=self.param["cond_check_lang_id"],
            lang_dataset_id=self.lang_dataset_id,
            model_lang_id=self.model_lang_id,
            lang_id_min_cutoff=self.param["lang_id_min_cutoff"],
            cond_check_perplexity=self.param["cond_check_perplexity"],
            sentencepiece_model=self.sentencepiece_model,
            kenlm_model=self.kenlm_model,
            perplexity_max_cutoff=self.param["perplexity_max_cutoff"],
        )
        return keep_example

    def __reduce__(self):
        return (
            self.__class__,
            (
                self.lang_dataset_id,
                self.path_fasttext_model,
                self.path_sentencepiece_model,
                self.path_kenlm_model,
            ),
        )


class DatasetFiltering:
    def __init__(
        self,
        dataset,
        lang_dataset_id,
        path_fasttext_model,
        path_sentencepiece_model,
        path_kenlm_model,
        num_proc,
        path_dir_save_dataset,
    ):
        self.ds = dataset
        self.lang_dataset_id = lang_dataset_id
        self.path_fasttext_model = path_fasttext_model
        self.path_sentencepiece_model = path_sentencepiece_model
        self.path_kenlm_model = path_kenlm_model
        self.num_proc = num_proc
        self.path_dir_save_dataset = path_dir_save_dataset

    def modifying_documents(self):
        dataset_modifying_documents = FunctionDatasetModifyingDocuments(
            self.lang_dataset_id
        )
        self.ds = self.ds.map(dataset_modifying_documents, num_proc=self.num_proc)

    def filtering(self):
        func_dataset_filtering = FunctionDatasetFiltering(
            self.lang_dataset_id,
            self.path_fasttext_model,
            self.path_sentencepiece_model,
            self.path_kenlm_model,
        )
        self.ds = self.ds.filter(func_dataset_filtering, num_proc=self.num_proc)

    def save_dataset(self):
        pathlib.Path(self.path_dir_save_dataset).mkdir(parents=True, exist_ok=True)
        path_dir_save_dataset = pathlib.PurePath(
            self.path_dir_save_dataset, self.lang_dataset_id
        )
        pathlib.Path(path_dir_save_dataset).mkdir(parents=True, exist_ok=True)
        self.ds.save_to_disk(path_dir_save_dataset)