Spaces:
Runtime error
Runtime error
Commit
·
f217a73
1
Parent(s):
bfbcd60
rename badwords to flagged words + new flagged words list of 68 words
Browse files- app.py +17 -16
- en_examples_with_stats.json +2 -2
- explanation_filtering_pipeline.pdf +0 -0
- filtering.py +33 -36
- badwords.py → flagged_words.py +29 -444
- languages_id.py +25 -25
- parameters_filtering.py +52 -52
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import os
|
|
| 7 |
import base64
|
| 8 |
import json
|
| 9 |
import pandas as pd
|
|
|
|
| 10 |
pd.options.mode.chained_assignment = None
|
| 11 |
|
| 12 |
import numpy as np
|
|
@@ -40,7 +41,7 @@ class Visualization:
|
|
| 40 |
self.lang_dataset_id = lang_dataset_id
|
| 41 |
self.param = LoadParameters.load_parameters(lang_dataset_id)
|
| 42 |
self.stopwords = LoadParameters.load_stopwords(lang_dataset_id)
|
| 43 |
-
self.
|
| 44 |
self.model_lang_id = LoadParameters.load_model_lang_id(
|
| 45 |
lang_dataset_id, path_fasttext_model
|
| 46 |
)
|
|
@@ -222,16 +223,16 @@ class Visualization:
|
|
| 222 |
print_discared_by_cond(cond)
|
| 223 |
conds["stopwords_ratio"] = [cond]
|
| 224 |
|
| 225 |
-
if "
|
| 226 |
-
cutoff_def = "If the
|
| 227 |
-
|
| 228 |
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|
| 229 |
)
|
| 230 |
-
new_key = ("
|
| 231 |
keys.append(new_key)
|
| 232 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 233 |
print_discared_by_cond(cond)
|
| 234 |
-
conds["
|
| 235 |
|
| 236 |
if "lang_id_score" in columns:
|
| 237 |
cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed."
|
|
@@ -316,11 +317,11 @@ class Visualization:
|
|
| 316 |
"Discarded documents for the filter on the stop words ratio",
|
| 317 |
)
|
| 318 |
|
| 319 |
-
if "
|
| 320 |
-
cond_filter = np.invert(np.all(conds["
|
| 321 |
display_dataset(
|
| 322 |
cond_filter,
|
| 323 |
-
"Discarded documents for the filter on the
|
| 324 |
)
|
| 325 |
|
| 326 |
if "lang_id_score" in columns:
|
|
@@ -504,19 +505,19 @@ class Visualization:
|
|
| 504 |
if is_doc_discarded(key, stopwords_ratio):
|
| 505 |
is_discarded = True
|
| 506 |
|
| 507 |
-
elif key[0] == "
|
| 508 |
-
|
| 509 |
personal_doc,
|
| 510 |
self.sentencepiece_model_tok,
|
| 511 |
self.param["strip_characters"],
|
| 512 |
self.param["cond_words_augmentation"],
|
| 513 |
self.param["words_augmentation_group_sizes"],
|
| 514 |
self.param["words_augmentation_join_char"],
|
| 515 |
-
self.
|
| 516 |
)
|
| 517 |
-
|
| 518 |
-
st.markdown(f"Flagged words ratio: {
|
| 519 |
-
if is_doc_discarded(key,
|
| 520 |
is_discarded = True
|
| 521 |
|
| 522 |
elif key[0] == "lang_id_score":
|
|
@@ -530,7 +531,7 @@ class Visualization:
|
|
| 530 |
st.markdown(
|
| 531 |
f"Language identification confidence score: {lang_id_score}"
|
| 532 |
)
|
| 533 |
-
if is_doc_discarded(key,
|
| 534 |
self.lang_dataset_id != lang_pred_dataset_id
|
| 535 |
):
|
| 536 |
is_discarded = True
|
|
|
|
| 7 |
import base64
|
| 8 |
import json
|
| 9 |
import pandas as pd
|
| 10 |
+
|
| 11 |
pd.options.mode.chained_assignment = None
|
| 12 |
|
| 13 |
import numpy as np
|
|
|
|
| 41 |
self.lang_dataset_id = lang_dataset_id
|
| 42 |
self.param = LoadParameters.load_parameters(lang_dataset_id)
|
| 43 |
self.stopwords = LoadParameters.load_stopwords(lang_dataset_id)
|
| 44 |
+
self.flagged_words = LoadParameters.load_flagged_words(lang_dataset_id)
|
| 45 |
self.model_lang_id = LoadParameters.load_model_lang_id(
|
| 46 |
lang_dataset_id, path_fasttext_model
|
| 47 |
)
|
|
|
|
| 223 |
print_discared_by_cond(cond)
|
| 224 |
conds["stopwords_ratio"] = [cond]
|
| 225 |
|
| 226 |
+
if "flagged_words_ratio" in columns:
|
| 227 |
+
cutoff_def = "If the flagged words ratio of a document is higher than this number, the document is removed."
|
| 228 |
+
cutoff_flagged_words_ratio = st.sidebar.slider(
|
| 229 |
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|
| 230 |
)
|
| 231 |
+
new_key = ("flagged_words_ratio", cutoff_flagged_words_ratio, True)
|
| 232 |
keys.append(new_key)
|
| 233 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
| 234 |
print_discared_by_cond(cond)
|
| 235 |
+
conds["flagged_words_ratio"] = [cond]
|
| 236 |
|
| 237 |
if "lang_id_score" in columns:
|
| 238 |
cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed."
|
|
|
|
| 317 |
"Discarded documents for the filter on the stop words ratio",
|
| 318 |
)
|
| 319 |
|
| 320 |
+
if "flagged_words_ratio" in columns:
|
| 321 |
+
cond_filter = np.invert(np.all(conds["flagged_words_ratio"], axis=0))
|
| 322 |
display_dataset(
|
| 323 |
cond_filter,
|
| 324 |
+
"Discarded documents for the filter on the flagged words ratio",
|
| 325 |
)
|
| 326 |
|
| 327 |
if "lang_id_score" in columns:
|
|
|
|
| 505 |
if is_doc_discarded(key, stopwords_ratio):
|
| 506 |
is_discarded = True
|
| 507 |
|
| 508 |
+
elif key[0] == "flagged_words_ratio":
|
| 509 |
+
flagged_words_ratio = Filtering.compute_flagged_words_ratio(
|
| 510 |
personal_doc,
|
| 511 |
self.sentencepiece_model_tok,
|
| 512 |
self.param["strip_characters"],
|
| 513 |
self.param["cond_words_augmentation"],
|
| 514 |
self.param["words_augmentation_group_sizes"],
|
| 515 |
self.param["words_augmentation_join_char"],
|
| 516 |
+
self.flagged_words,
|
| 517 |
)
|
| 518 |
+
flagged_words_ratio = round(flagged_words_ratio, 3)
|
| 519 |
+
st.markdown(f"Flagged words ratio: {flagged_words_ratio}")
|
| 520 |
+
if is_doc_discarded(key, flagged_words_ratio):
|
| 521 |
is_discarded = True
|
| 522 |
|
| 523 |
elif key[0] == "lang_id_score":
|
|
|
|
| 531 |
st.markdown(
|
| 532 |
f"Language identification confidence score: {lang_id_score}"
|
| 533 |
)
|
| 534 |
+
if is_doc_discarded(key, flagged_words_ratio) or (
|
| 535 |
self.lang_dataset_id != lang_pred_dataset_id
|
| 536 |
):
|
| 537 |
is_discarded = True
|
en_examples_with_stats.json
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ffbb8afeba42822e4b10341112999321e0e14a19a5eeebc342dc68a9f65d3c7f
|
| 3 |
+
size 237426014
|
explanation_filtering_pipeline.pdf
CHANGED
|
Binary files a/explanation_filtering_pipeline.pdf and b/explanation_filtering_pipeline.pdf differ
|
|
|
filtering.py
CHANGED
|
@@ -13,7 +13,7 @@ from languages_id import langs_id
|
|
| 13 |
from parameters_filtering import parameters_filtering
|
| 14 |
from normalization import normalization
|
| 15 |
from stopwords import stopwords
|
| 16 |
-
from
|
| 17 |
|
| 18 |
|
| 19 |
class LoadParameters:
|
|
@@ -37,15 +37,15 @@ class LoadParameters:
|
|
| 37 |
return stopwords_lang
|
| 38 |
|
| 39 |
@staticmethod
|
| 40 |
-
def
|
| 41 |
-
|
| 42 |
-
langs_id["dataset_id"] == lang_dataset_id, "
|
| 43 |
].iloc[0]
|
| 44 |
-
if
|
| 45 |
-
|
| 46 |
else:
|
| 47 |
-
|
| 48 |
-
return
|
| 49 |
|
| 50 |
@staticmethod
|
| 51 |
def load_model_lang_id(lang_dataset_id, path_fasttext_model):
|
|
@@ -533,14 +533,14 @@ class Filtering:
|
|
| 533 |
return cond
|
| 534 |
|
| 535 |
@staticmethod
|
| 536 |
-
def
|
| 537 |
document,
|
| 538 |
sentencepiece_model_tok,
|
| 539 |
strip_characters,
|
| 540 |
cond_words_augmentation,
|
| 541 |
words_augmentation_group_sizes,
|
| 542 |
words_augmentation_join_char,
|
| 543 |
-
|
| 544 |
):
|
| 545 |
words = ModifyingDocuments.get_words_from_document(
|
| 546 |
document,
|
|
@@ -559,39 +559,36 @@ class Filtering:
|
|
| 559 |
for group_size in words_augmentation_group_sizes
|
| 560 |
]
|
| 561 |
augmentation = [word for augm in augmentation for word in augm]
|
| 562 |
-
|
| 563 |
-
[word for word in words + augmentation if word in
|
| 564 |
) / len(words)
|
| 565 |
-
if
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
if word in badwords:
|
| 569 |
-
print(word)
|
| 570 |
-
return badwords_ratio
|
| 571 |
|
| 572 |
@staticmethod
|
| 573 |
-
def
|
| 574 |
document,
|
| 575 |
sentencepiece_model_tok,
|
| 576 |
strip_characters,
|
| 577 |
cond_words_augmentation,
|
| 578 |
words_augmentation_group_sizes,
|
| 579 |
words_augmentation_join_char,
|
| 580 |
-
|
| 581 |
-
|
| 582 |
):
|
| 583 |
cond = True
|
| 584 |
-
if
|
| 585 |
-
|
| 586 |
document,
|
| 587 |
sentencepiece_model_tok,
|
| 588 |
strip_characters,
|
| 589 |
cond_words_augmentation,
|
| 590 |
words_augmentation_group_sizes,
|
| 591 |
words_augmentation_join_char,
|
| 592 |
-
|
| 593 |
)
|
| 594 |
-
cond =
|
| 595 |
return cond
|
| 596 |
|
| 597 |
@staticmethod
|
|
@@ -685,9 +682,9 @@ class Filtering:
|
|
| 685 |
cond_check_stopwords,
|
| 686 |
stopwords,
|
| 687 |
stopwords_min_cutoff,
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
cond_check_lang_id,
|
| 692 |
lang_dataset_id,
|
| 693 |
model_lang_id,
|
|
@@ -732,16 +729,16 @@ class Filtering:
|
|
| 732 |
stopwords_min_cutoff,
|
| 733 |
):
|
| 734 |
return False
|
| 735 |
-
if
|
| 736 |
-
if not Filtering.
|
| 737 |
document,
|
| 738 |
sentencepiece_model_tok,
|
| 739 |
strip_characters,
|
| 740 |
cond_words_augmentation,
|
| 741 |
words_augmentation_group_sizes,
|
| 742 |
words_augmentation_join_char,
|
| 743 |
-
|
| 744 |
-
|
| 745 |
):
|
| 746 |
return False
|
| 747 |
if cond_check_lang_id:
|
|
@@ -778,7 +775,7 @@ class FunctionDatasetFiltering:
|
|
| 778 |
|
| 779 |
self.param = LoadParameters.load_parameters(lang_dataset_id)
|
| 780 |
self.stopwords = LoadParameters.load_stopwords(lang_dataset_id)
|
| 781 |
-
self.
|
| 782 |
self.model_lang_id = LoadParameters.load_model_lang_id(
|
| 783 |
lang_dataset_id, path_fasttext_model
|
| 784 |
)
|
|
@@ -812,9 +809,9 @@ class FunctionDatasetFiltering:
|
|
| 812 |
cond_check_stopwords=self.param["cond_check_stopwords"],
|
| 813 |
stopwords=self.stopwords,
|
| 814 |
stopwords_min_cutoff=self.param["stopwords_min_cutoff"],
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
|
| 818 |
cond_check_lang_id=self.param["cond_check_lang_id"],
|
| 819 |
lang_dataset_id=self.lang_dataset_id,
|
| 820 |
model_lang_id=self.model_lang_id,
|
|
|
|
| 13 |
from parameters_filtering import parameters_filtering
|
| 14 |
from normalization import normalization
|
| 15 |
from stopwords import stopwords
|
| 16 |
+
from flagged_words import flagged_words
|
| 17 |
|
| 18 |
|
| 19 |
class LoadParameters:
|
|
|
|
| 37 |
return stopwords_lang
|
| 38 |
|
| 39 |
@staticmethod
|
| 40 |
+
def load_flagged_words(lang_dataset_id):
|
| 41 |
+
flagged_words_lang_id = langs_id.loc[
|
| 42 |
+
langs_id["dataset_id"] == lang_dataset_id, "flagged_words_id"
|
| 43 |
].iloc[0]
|
| 44 |
+
if flagged_words_lang_id:
|
| 45 |
+
flagged_words_lang = set(flagged_words[flagged_words_lang_id])
|
| 46 |
else:
|
| 47 |
+
flagged_words_lang = None
|
| 48 |
+
return flagged_words_lang
|
| 49 |
|
| 50 |
@staticmethod
|
| 51 |
def load_model_lang_id(lang_dataset_id, path_fasttext_model):
|
|
|
|
| 533 |
return cond
|
| 534 |
|
| 535 |
@staticmethod
|
| 536 |
+
def compute_flagged_words_ratio(
|
| 537 |
document,
|
| 538 |
sentencepiece_model_tok,
|
| 539 |
strip_characters,
|
| 540 |
cond_words_augmentation,
|
| 541 |
words_augmentation_group_sizes,
|
| 542 |
words_augmentation_join_char,
|
| 543 |
+
flagged_words,
|
| 544 |
):
|
| 545 |
words = ModifyingDocuments.get_words_from_document(
|
| 546 |
document,
|
|
|
|
| 559 |
for group_size in words_augmentation_group_sizes
|
| 560 |
]
|
| 561 |
augmentation = [word for augm in augmentation for word in augm]
|
| 562 |
+
flagged_words_ratio = len(
|
| 563 |
+
[word for word in words + augmentation if word in flagged_words]
|
| 564 |
) / len(words)
|
| 565 |
+
if flagged_words_ratio > 1.0:
|
| 566 |
+
flagged_words_ratio = 1.0
|
| 567 |
+
return flagged_words_ratio
|
|
|
|
|
|
|
|
|
|
| 568 |
|
| 569 |
@staticmethod
|
| 570 |
+
def check_flagged_words(
|
| 571 |
document,
|
| 572 |
sentencepiece_model_tok,
|
| 573 |
strip_characters,
|
| 574 |
cond_words_augmentation,
|
| 575 |
words_augmentation_group_sizes,
|
| 576 |
words_augmentation_join_char,
|
| 577 |
+
flagged_words,
|
| 578 |
+
flagged_words_max_cutoff,
|
| 579 |
):
|
| 580 |
cond = True
|
| 581 |
+
if flagged_words:
|
| 582 |
+
flagged_words_ratio = Filtering.compute_flagged_words_ratio(
|
| 583 |
document,
|
| 584 |
sentencepiece_model_tok,
|
| 585 |
strip_characters,
|
| 586 |
cond_words_augmentation,
|
| 587 |
words_augmentation_group_sizes,
|
| 588 |
words_augmentation_join_char,
|
| 589 |
+
flagged_words,
|
| 590 |
)
|
| 591 |
+
cond = flagged_words_ratio <= flagged_words_max_cutoff
|
| 592 |
return cond
|
| 593 |
|
| 594 |
@staticmethod
|
|
|
|
| 682 |
cond_check_stopwords,
|
| 683 |
stopwords,
|
| 684 |
stopwords_min_cutoff,
|
| 685 |
+
cond_check_flagged_words,
|
| 686 |
+
flagged_words,
|
| 687 |
+
flagged_words_max_cutoff,
|
| 688 |
cond_check_lang_id,
|
| 689 |
lang_dataset_id,
|
| 690 |
model_lang_id,
|
|
|
|
| 729 |
stopwords_min_cutoff,
|
| 730 |
):
|
| 731 |
return False
|
| 732 |
+
if cond_check_flagged_words:
|
| 733 |
+
if not Filtering.check_flagged_words(
|
| 734 |
document,
|
| 735 |
sentencepiece_model_tok,
|
| 736 |
strip_characters,
|
| 737 |
cond_words_augmentation,
|
| 738 |
words_augmentation_group_sizes,
|
| 739 |
words_augmentation_join_char,
|
| 740 |
+
flagged_words,
|
| 741 |
+
flagged_words_max_cutoff,
|
| 742 |
):
|
| 743 |
return False
|
| 744 |
if cond_check_lang_id:
|
|
|
|
| 775 |
|
| 776 |
self.param = LoadParameters.load_parameters(lang_dataset_id)
|
| 777 |
self.stopwords = LoadParameters.load_stopwords(lang_dataset_id)
|
| 778 |
+
self.flagged_words = LoadParameters.load_flagged_words(lang_dataset_id)
|
| 779 |
self.model_lang_id = LoadParameters.load_model_lang_id(
|
| 780 |
lang_dataset_id, path_fasttext_model
|
| 781 |
)
|
|
|
|
| 809 |
cond_check_stopwords=self.param["cond_check_stopwords"],
|
| 810 |
stopwords=self.stopwords,
|
| 811 |
stopwords_min_cutoff=self.param["stopwords_min_cutoff"],
|
| 812 |
+
cond_check_flagged_words=self.param["cond_check_flagged_words"],
|
| 813 |
+
flagged_words=self.flagged_words,
|
| 814 |
+
flagged_words_max_cutoff=self.param["flagged_words_max_cutoff"],
|
| 815 |
cond_check_lang_id=self.param["cond_check_lang_id"],
|
| 816 |
lang_dataset_id=self.lang_dataset_id,
|
| 817 |
model_lang_id=self.model_lang_id,
|
badwords.py → flagged_words.py
RENAMED
|
@@ -6,89 +6,21 @@
|
|
| 6 |
# https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
|
| 7 |
|
| 8 |
|
| 9 |
-
|
| 10 |
-
"abuse",
|
| 11 |
"anal",
|
| 12 |
-
"anilingus",
|
| 13 |
-
"anus",
|
| 14 |
-
"aroused",
|
| 15 |
-
"arse",
|
| 16 |
-
"arsehole",
|
| 17 |
-
"ass",
|
| 18 |
-
"asses",
|
| 19 |
-
"assfuck",
|
| 20 |
-
"asshat",
|
| 21 |
-
"asshole",
|
| 22 |
-
"assholes",
|
| 23 |
-
"autoerotic",
|
| 24 |
-
"bangbros",
|
| 25 |
-
"banging",
|
| 26 |
"bareback",
|
| 27 |
-
"bastard",
|
| 28 |
-
"bastards",
|
| 29 |
-
"bazongas",
|
| 30 |
"bbw",
|
| 31 |
"bdsm",
|
| 32 |
-
"biatch",
|
| 33 |
-
"bicurious",
|
| 34 |
-
"bigass",
|
| 35 |
-
"bigtits",
|
| 36 |
-
"bimbo",
|
| 37 |
-
"bimbos",
|
| 38 |
-
"bitch",
|
| 39 |
-
"bitches",
|
| 40 |
-
"bitching",
|
| 41 |
"blowjob",
|
| 42 |
"blowjobs",
|
| 43 |
-
"
|
| 44 |
-
"boner",
|
| 45 |
-
"boners",
|
| 46 |
-
"boob",
|
| 47 |
-
"boobies",
|
| 48 |
-
"boobs",
|
| 49 |
-
"booty",
|
| 50 |
-
"brothel",
|
| 51 |
-
"buceta",
|
| 52 |
-
"bugger",
|
| 53 |
-
"buggered",
|
| 54 |
-
"buggery",
|
| 55 |
"bukkake",
|
| 56 |
-
"bule",
|
| 57 |
-
"buttcheeks",
|
| 58 |
-
"buttfuck",
|
| 59 |
-
"butthead",
|
| 60 |
-
"butthole",
|
| 61 |
-
"buttplug",
|
| 62 |
-
"cameltoe",
|
| 63 |
"camgirl",
|
| 64 |
"camwhore",
|
| 65 |
-
"chink",
|
| 66 |
-
"chinks",
|
| 67 |
-
"cialis",
|
| 68 |
-
"clit",
|
| 69 |
-
"clitoris",
|
| 70 |
-
"clits",
|
| 71 |
-
"clitty",
|
| 72 |
-
"clusterfuck",
|
| 73 |
-
"cock",
|
| 74 |
-
"cock-head",
|
| 75 |
-
"cockblock",
|
| 76 |
-
"cockfight",
|
| 77 |
-
"cockhead",
|
| 78 |
-
"cocks",
|
| 79 |
-
"cocksman",
|
| 80 |
-
"cocksucker",
|
| 81 |
"cocksucking",
|
| 82 |
-
"
|
| 83 |
-
"coitus",
|
| 84 |
-
"coochie",
|
| 85 |
-
"cooly",
|
| 86 |
-
"coon",
|
| 87 |
-
"coons",
|
| 88 |
-
"copulate",
|
| 89 |
-
"cowgirl",
|
| 90 |
-
"crabs",
|
| 91 |
"creampie",
|
|
|
|
| 92 |
"cum",
|
| 93 |
"cumming",
|
| 94 |
"cums",
|
|
@@ -96,399 +28,58 @@ english_badwords = [
|
|
| 96 |
"cumshots",
|
| 97 |
"cumslut",
|
| 98 |
"cunnilingus",
|
| 99 |
-
"cunny",
|
| 100 |
-
"cunt",
|
| 101 |
-
"cunts",
|
| 102 |
-
"cybersex",
|
| 103 |
-
"darkey",
|
| 104 |
-
"darkie",
|
| 105 |
-
"darkies",
|
| 106 |
-
"darky",
|
| 107 |
"deepthroat",
|
| 108 |
"deepthroating",
|
| 109 |
-
"dick",
|
| 110 |
-
"dickhole",
|
| 111 |
-
"dicks",
|
| 112 |
"dildo",
|
| 113 |
"dildos",
|
| 114 |
"dogging",
|
| 115 |
-
"doggy-style",
|
| 116 |
"doggystyle",
|
| 117 |
"dominatrix",
|
| 118 |
-
"dommes",
|
| 119 |
-
"dong",
|
| 120 |
-
"dp",
|
| 121 |
-
"dupa",
|
| 122 |
-
"dyke",
|
| 123 |
-
"dykes",
|
| 124 |
-
"ecchi",
|
| 125 |
-
"ejaculate",
|
| 126 |
-
"ejaculated",
|
| 127 |
-
"ejaculates",
|
| 128 |
-
"ejaculating",
|
| 129 |
-
"ejaculation",
|
| 130 |
-
"ejaculations",
|
| 131 |
-
"enema",
|
| 132 |
-
"erect",
|
| 133 |
-
"erection",
|
| 134 |
-
"ero",
|
| 135 |
"erotic",
|
| 136 |
-
"erotism",
|
| 137 |
-
"escort",
|
| 138 |
-
"fag",
|
| 139 |
-
"fagging",
|
| 140 |
-
"faggot",
|
| 141 |
-
"fagot",
|
| 142 |
-
"fagots",
|
| 143 |
-
"fags",
|
| 144 |
-
"felch",
|
| 145 |
-
"fellate",
|
| 146 |
"fellatio",
|
| 147 |
"femdom",
|
| 148 |
-
"fetish",
|
| 149 |
-
"figging",
|
| 150 |
-
"fingerbang",
|
| 151 |
"fingering",
|
| 152 |
-
"fisted",
|
| 153 |
-
"fister",
|
| 154 |
"fisting",
|
| 155 |
-
"floozy",
|
| 156 |
-
"fondle",
|
| 157 |
-
"footfetish",
|
| 158 |
"footjob",
|
| 159 |
-
"foreskin",
|
| 160 |
-
"fornicate",
|
| 161 |
-
"foursome",
|
| 162 |
-
"fuck",
|
| 163 |
-
"fuckable",
|
| 164 |
-
"fuckbook",
|
| 165 |
-
"fuckboy",
|
| 166 |
-
"fuckbuddy",
|
| 167 |
-
"fucked",
|
| 168 |
-
"fucker",
|
| 169 |
-
"fuckers",
|
| 170 |
-
"fuckfest",
|
| 171 |
-
"fuckhole",
|
| 172 |
-
"fuckin",
|
| 173 |
-
"fucking",
|
| 174 |
-
"fucks",
|
| 175 |
-
"fuk",
|
| 176 |
-
"fukin",
|
| 177 |
-
"fuking",
|
| 178 |
-
"g-spot",
|
| 179 |
"gangbang",
|
| 180 |
-
"gangbanged",
|
| 181 |
-
"gangbanger",
|
| 182 |
-
"gangbangs",
|
| 183 |
-
"genital",
|
| 184 |
-
"genitals",
|
| 185 |
-
"gigolo",
|
| 186 |
-
"glans",
|
| 187 |
-
"gonad",
|
| 188 |
-
"gonads",
|
| 189 |
-
"gook",
|
| 190 |
-
"gringo",
|
| 191 |
-
"gringos",
|
| 192 |
-
"grope",
|
| 193 |
-
"gspot",
|
| 194 |
-
"guido",
|
| 195 |
"handjob",
|
| 196 |
-
"haole",
|
| 197 |
-
"hapa",
|
| 198 |
-
"hardcore",
|
| 199 |
-
"hardon",
|
| 200 |
-
"harem",
|
| 201 |
"hentai",
|
| 202 |
-
"hindoo",
|
| 203 |
-
"hoe",
|
| 204 |
-
"hoes",
|
| 205 |
-
"honky",
|
| 206 |
-
"hooker",
|
| 207 |
-
"hookers",
|
| 208 |
-
"hooter",
|
| 209 |
-
"hooters",
|
| 210 |
-
"hori",
|
| 211 |
-
"horndog",
|
| 212 |
"horney",
|
| 213 |
"horniest",
|
| 214 |
"horny",
|
| 215 |
-
"humped",
|
| 216 |
-
"humper",
|
| 217 |
-
"humping",
|
| 218 |
-
"hussy",
|
| 219 |
-
"hymen",
|
| 220 |
-
"ikey",
|
| 221 |
-
"incest",
|
| 222 |
-
"injun",
|
| 223 |
-
"intercourse",
|
| 224 |
-
"interracial",
|
| 225 |
-
"jack-off",
|
| 226 |
-
"jackoff",
|
| 227 |
-
"jailbait",
|
| 228 |
-
"jerk-off",
|
| 229 |
-
"jerkoff",
|
| 230 |
-
"jiggy",
|
| 231 |
"jism",
|
| 232 |
"jizz",
|
| 233 |
-
"jizzed",
|
| 234 |
-
"kaffir",
|
| 235 |
-
"kafir",
|
| 236 |
-
"kike",
|
| 237 |
-
"kikes",
|
| 238 |
-
"kinkster",
|
| 239 |
-
"kinky",
|
| 240 |
-
"kkk",
|
| 241 |
-
"klan",
|
| 242 |
-
"kraut",
|
| 243 |
-
"labia",
|
| 244 |
-
"lapdance",
|
| 245 |
-
"libido",
|
| 246 |
-
"licker",
|
| 247 |
-
"licking",
|
| 248 |
-
"limey",
|
| 249 |
-
"lingerie",
|
| 250 |
-
"livesex",
|
| 251 |
-
"lolita",
|
| 252 |
-
"lovemaking",
|
| 253 |
-
"lust",
|
| 254 |
-
"lusting",
|
| 255 |
-
"masochist",
|
| 256 |
-
"masterbate",
|
| 257 |
"masterbating",
|
| 258 |
-
"masterbation",
|
| 259 |
"masturbate",
|
| 260 |
"masturbating",
|
| 261 |
"masturbation",
|
| 262 |
"milf",
|
| 263 |
-
"minge",
|
| 264 |
-
"missionary",
|
| 265 |
-
"molest",
|
| 266 |
-
"molestation",
|
| 267 |
-
"molester",
|
| 268 |
-
"munging",
|
| 269 |
-
"muschi",
|
| 270 |
-
"nads",
|
| 271 |
-
"naked",
|
| 272 |
-
"necked",
|
| 273 |
-
"necro",
|
| 274 |
-
"negress",
|
| 275 |
-
"negro",
|
| 276 |
-
"negroes",
|
| 277 |
-
"negroid",
|
| 278 |
-
"negros",
|
| 279 |
-
"nig",
|
| 280 |
-
"nigar",
|
| 281 |
-
"nigga",
|
| 282 |
-
"niggas",
|
| 283 |
-
"niggaz",
|
| 284 |
-
"nigger",
|
| 285 |
-
"niggers",
|
| 286 |
-
"nigra",
|
| 287 |
-
"nipple",
|
| 288 |
-
"nipples",
|
| 289 |
-
"nookie",
|
| 290 |
-
"nooky",
|
| 291 |
-
"nooner",
|
| 292 |
-
"nude",
|
| 293 |
-
"nudie",
|
| 294 |
-
"nudity",
|
| 295 |
-
"nymph",
|
| 296 |
-
"nympho",
|
| 297 |
-
"nymphomania",
|
| 298 |
-
"orgasim",
|
| 299 |
-
"orgasm",
|
| 300 |
-
"orgasms",
|
| 301 |
"orgies",
|
| 302 |
"orgy",
|
| 303 |
-
"orifice",
|
| 304 |
-
"p0rn",
|
| 305 |
-
"paedophile",
|
| 306 |
-
"pantie",
|
| 307 |
-
"panties",
|
| 308 |
-
"panty",
|
| 309 |
-
"pastie",
|
| 310 |
-
"pecker",
|
| 311 |
-
"pedo",
|
| 312 |
-
"pedophile",
|
| 313 |
-
"pedophilia",
|
| 314 |
-
"pedophiliac",
|
| 315 |
-
"peeper",
|
| 316 |
-
"peepshow",
|
| 317 |
"pegging",
|
| 318 |
-
"penetrate",
|
| 319 |
-
"penetration",
|
| 320 |
-
"penile",
|
| 321 |
-
"penis",
|
| 322 |
-
"penises",
|
| 323 |
-
"penus",
|
| 324 |
-
"perv",
|
| 325 |
-
"phallic",
|
| 326 |
-
"phonesex",
|
| 327 |
-
"pickaninnies",
|
| 328 |
-
"pimp",
|
| 329 |
-
"playboy",
|
| 330 |
-
"playgirl",
|
| 331 |
-
"poontang",
|
| 332 |
"porn",
|
|
|
|
| 333 |
"porno",
|
| 334 |
-
"pornography",
|
| 335 |
"pornos",
|
| 336 |
-
"
|
| 337 |
-
"
|
| 338 |
-
"
|
| 339 |
-
"pron",
|
| 340 |
-
"prostitute",
|
| 341 |
-
"pube",
|
| 342 |
-
"pubes",
|
| 343 |
-
"pubic",
|
| 344 |
-
"pubis",
|
| 345 |
-
"punani",
|
| 346 |
-
"pussies",
|
| 347 |
-
"pussy",
|
| 348 |
-
"pussys",
|
| 349 |
-
"pusy",
|
| 350 |
-
"puta",
|
| 351 |
-
"puto",
|
| 352 |
-
"queef",
|
| 353 |
-
"quickie",
|
| 354 |
-
"quicky",
|
| 355 |
-
"quim",
|
| 356 |
-
"randy",
|
| 357 |
-
"rape",
|
| 358 |
-
"raped",
|
| 359 |
-
"raper",
|
| 360 |
-
"raping",
|
| 361 |
-
"rapist",
|
| 362 |
-
"rectum",
|
| 363 |
-
"redneck",
|
| 364 |
-
"rednecks",
|
| 365 |
-
"redskin",
|
| 366 |
-
"redskins",
|
| 367 |
-
"rimjob",
|
| 368 |
"rimming",
|
| 369 |
-
"russki",
|
| 370 |
-
"s&m",
|
| 371 |
-
"sadism",
|
| 372 |
-
"sadist",
|
| 373 |
-
"sambo",
|
| 374 |
-
"santorum",
|
| 375 |
-
"schlong",
|
| 376 |
-
"scissoring",
|
| 377 |
-
"semen",
|
| 378 |
-
"sex",
|
| 379 |
-
"sexed",
|
| 380 |
-
"sexi",
|
| 381 |
-
"sexing",
|
| 382 |
-
"sexo",
|
| 383 |
-
"sexpot",
|
| 384 |
-
"sextoy",
|
| 385 |
-
"sexual",
|
| 386 |
-
"sexually",
|
| 387 |
-
"sexx",
|
| 388 |
-
"sexxx",
|
| 389 |
-
"sexxxy",
|
| 390 |
-
"sexxy",
|
| 391 |
-
"sexy",
|
| 392 |
-
"sh!t",
|
| 393 |
-
"sh1t",
|
| 394 |
-
"shagging",
|
| 395 |
-
"shemale",
|
| 396 |
-
"sissy",
|
| 397 |
-
"skank",
|
| 398 |
-
"skanks",
|
| 399 |
-
"slapper",
|
| 400 |
-
"slut",
|
| 401 |
-
"sluts",
|
| 402 |
-
"slutting",
|
| 403 |
"slutty",
|
| 404 |
-
"smut",
|
| 405 |
-
"smutty",
|
| 406 |
-
"sodomise",
|
| 407 |
-
"sodomite",
|
| 408 |
-
"sodomize",
|
| 409 |
-
"sodomy",
|
| 410 |
-
"spank",
|
| 411 |
-
"sperm",
|
| 412 |
-
"spic",
|
| 413 |
-
"spick",
|
| 414 |
-
"splooge",
|
| 415 |
-
"spooge",
|
| 416 |
-
"squaw",
|
| 417 |
"squirting",
|
| 418 |
-
"steamy",
|
| 419 |
-
"stiffy",
|
| 420 |
"strapon",
|
| 421 |
-
"suck",
|
| 422 |
-
"sucked",
|
| 423 |
-
"sucker",
|
| 424 |
-
"sucking",
|
| 425 |
-
"sucks",
|
| 426 |
-
"swallow",
|
| 427 |
-
"swallower",
|
| 428 |
-
"swinger",
|
| 429 |
-
"teabagging",
|
| 430 |
-
"testical",
|
| 431 |
-
"testicle",
|
| 432 |
-
"testicles",
|
| 433 |
-
"testis",
|
| 434 |
"threesome",
|
| 435 |
-
"threeway",
|
| 436 |
-
"titfuck",
|
| 437 |
-
"titjob",
|
| 438 |
-
"tits",
|
| 439 |
-
"tittie",
|
| 440 |
-
"titties",
|
| 441 |
-
"titty",
|
| 442 |
-
"tittyfuck",
|
| 443 |
-
"tity",
|
| 444 |
-
"toots",
|
| 445 |
-
"topless",
|
| 446 |
-
"trannie",
|
| 447 |
-
"tranny",
|
| 448 |
-
"tribadism",
|
| 449 |
-
"twat",
|
| 450 |
-
"twats",
|
| 451 |
-
"undies",
|
| 452 |
-
"undressing",
|
| 453 |
-
"upskirt",
|
| 454 |
-
"vag",
|
| 455 |
-
"vagina",
|
| 456 |
-
"vaginal",
|
| 457 |
-
"viagra",
|
| 458 |
"vibrator",
|
| 459 |
-
"
|
| 460 |
-
"
|
| 461 |
-
"
|
| 462 |
-
"vulva",
|
| 463 |
-
"wank",
|
| 464 |
-
"wanker",
|
| 465 |
-
"wanking",
|
| 466 |
-
"wazoo",
|
| 467 |
-
"wedgie",
|
| 468 |
-
"wench",
|
| 469 |
-
"wetback",
|
| 470 |
-
"whore",
|
| 471 |
-
"whored",
|
| 472 |
-
"whorehouse",
|
| 473 |
-
"whores",
|
| 474 |
-
"whoring",
|
| 475 |
-
"wigger",
|
| 476 |
-
"willie",
|
| 477 |
-
"willies",
|
| 478 |
-
"willy",
|
| 479 |
-
"wog",
|
| 480 |
-
"wop",
|
| 481 |
-
"x-rated",
|
| 482 |
"xxx",
|
| 483 |
-
"
|
| 484 |
-
"yaoi",
|
| 485 |
-
"yid",
|
| 486 |
-
"zoophile",
|
| 487 |
-
"zoophilia",
|
| 488 |
]
|
| 489 |
|
| 490 |
-
|
| 491 |
-
|
|
|
|
| 492 |
+ [
|
| 493 |
"احتلام",
|
| 494 |
"اغتصاب",
|
|
@@ -529,9 +120,8 @@ badwords = {
|
|
| 529 |
"مفلقسة",
|
| 530 |
"نيك",
|
| 531 |
],
|
| 532 |
-
"ca":
|
| 533 |
+ [
|
| 534 |
-
"avortament",
|
| 535 |
"anal",
|
| 536 |
"anus",
|
| 537 |
"cul",
|
|
@@ -664,8 +254,8 @@ badwords = {
|
|
| 664 |
"x classificat",
|
| 665 |
"xxx",
|
| 666 |
],
|
| 667 |
-
"en":
|
| 668 |
-
"es":
|
| 669 |
+ [
|
| 670 |
"Asesinato",
|
| 671 |
"Bollera",
|
|
@@ -846,7 +436,6 @@ badwords = {
|
|
| 846 |
"tirón",
|
| 847 |
"tizón",
|
| 848 |
"tonto",
|
| 849 |
-
"transexual",
|
| 850 |
"vagina",
|
| 851 |
"vete a la mierda",
|
| 852 |
"viagra",
|
|
@@ -858,7 +447,7 @@ badwords = {
|
|
| 858 |
"xxx",
|
| 859 |
"zurullo",
|
| 860 |
],
|
| 861 |
-
"eu":
|
| 862 |
+ [
|
| 863 |
"abortu",
|
| 864 |
"anal",
|
|
@@ -899,13 +488,12 @@ badwords = {
|
|
| 899 |
"bagina",
|
| 900 |
"viagra",
|
| 901 |
],
|
| 902 |
-
"fr":
|
| 903 |
+ [
|
| 904 |
"MALPT",
|
| 905 |
"anal",
|
| 906 |
"anus",
|
| 907 |
"arracher",
|
| 908 |
-
"avortement",
|
| 909 |
"baise",
|
| 910 |
"baiser",
|
| 911 |
"baiseur de chien",
|
|
@@ -1078,7 +666,6 @@ badwords = {
|
|
| 1078 |
"testicule",
|
| 1079 |
"teuch",
|
| 1080 |
"titt",
|
| 1081 |
-
"transexuelle",
|
| 1082 |
"tremper",
|
| 1083 |
"tringler",
|
| 1084 |
"trique",
|
|
@@ -1102,7 +689,7 @@ badwords = {
|
|
| 1102 |
"éjaculé",
|
| 1103 |
"étron",
|
| 1104 |
],
|
| 1105 |
-
"hi":
|
| 1106 |
+ [
|
| 1107 |
"aand",
|
| 1108 |
"aandu",
|
|
@@ -1163,7 +750,6 @@ badwords = {
|
|
| 1163 |
"fagging",
|
| 1164 |
"fagots",
|
| 1165 |
"felching",
|
| 1166 |
-
"fuckers",
|
| 1167 |
"fuckings",
|
| 1168 |
"fucks",
|
| 1169 |
"gaand",
|
|
@@ -1361,7 +947,7 @@ badwords = {
|
|
| 1361 |
"होमोसेक्सुअल",
|
| 1362 |
"होर",
|
| 1363 |
],
|
| 1364 |
-
"id":
|
| 1365 |
+ [
|
| 1366 |
"abortus",
|
| 1367 |
"anal",
|
|
@@ -1479,7 +1065,7 @@ badwords = {
|
|
| 1479 |
"x diberi peringkat",
|
| 1480 |
"xxx",
|
| 1481 |
],
|
| 1482 |
-
"kn":
|
| 1483 |
+ [
|
| 1484 |
"ಗರ್ಭಪಾತ",
|
| 1485 |
"ಗುದ",
|
|
@@ -1622,7 +1208,7 @@ badwords = {
|
|
| 1622 |
"x ರೇಟೆಡ್",
|
| 1623 |
"xxx",
|
| 1624 |
],
|
| 1625 |
-
"ml":
|
| 1626 |
+ [
|
| 1627 |
"ഗർഭഛിദ്രം",
|
| 1628 |
"വ��ശപ്പ്",
|
|
@@ -1759,7 +1345,7 @@ badwords = {
|
|
| 1759 |
"x റേറ്റുചെയ്തു",
|
| 1760 |
"xxx",
|
| 1761 |
],
|
| 1762 |
-
"mr":
|
| 1763 |
+ [
|
| 1764 |
"गर्भपात",
|
| 1765 |
"गुदा",
|
|
@@ -1898,7 +1484,7 @@ badwords = {
|
|
| 1898 |
"एक्स रेट केले",
|
| 1899 |
"xxx",
|
| 1900 |
],
|
| 1901 |
-
"pt":
|
| 1902 |
+ [
|
| 1903 |
"aborto",
|
| 1904 |
"amador",
|
|
@@ -2000,7 +1586,6 @@ badwords = {
|
|
| 2000 |
"gozar",
|
| 2001 |
"grelho",
|
| 2002 |
"heroína",
|
| 2003 |
-
"homem gay",
|
| 2004 |
"homoerótico",
|
| 2005 |
"homosexual",
|
| 2006 |
"hore",
|
|
@@ -2097,7 +1682,7 @@ badwords = {
|
|
| 2097 |
"xxx",
|
| 2098 |
"ânus",
|
| 2099 |
],
|
| 2100 |
-
"te":
|
| 2101 |
+ [
|
| 2102 |
"గర్భస్రావం",
|
| 2103 |
"అంగ",
|
|
@@ -2244,7 +1829,7 @@ badwords = {
|
|
| 2244 |
"x రేట్",
|
| 2245 |
"xxx",
|
| 2246 |
],
|
| 2247 |
-
"vi":
|
| 2248 |
+ [
|
| 2249 |
"sự phá thai",
|
| 2250 |
"hậu môn",
|
|
@@ -2362,7 +1947,7 @@ badwords = {
|
|
| 2362 |
"x đánh giá",
|
| 2363 |
"xxx",
|
| 2364 |
],
|
| 2365 |
-
"zh":
|
| 2366 |
+ [
|
| 2367 |
"13.",
|
| 2368 |
"13点",
|
|
|
|
| 6 |
# https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
|
| 7 |
|
| 8 |
|
| 9 |
+
english_flagged_words = [
|
|
|
|
| 10 |
"anal",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
"bareback",
|
|
|
|
|
|
|
|
|
|
| 12 |
"bbw",
|
| 13 |
"bdsm",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
"blowjob",
|
| 15 |
"blowjobs",
|
| 16 |
+
"brazzers",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
"bukkake",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
"camgirl",
|
| 19 |
"camwhore",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
"cocksucking",
|
| 21 |
+
"cougar",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
"creampie",
|
| 23 |
+
"cuckold",
|
| 24 |
"cum",
|
| 25 |
"cumming",
|
| 26 |
"cums",
|
|
|
|
| 28 |
"cumshots",
|
| 29 |
"cumslut",
|
| 30 |
"cunnilingus",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
"deepthroat",
|
| 32 |
"deepthroating",
|
|
|
|
|
|
|
|
|
|
| 33 |
"dildo",
|
| 34 |
"dildos",
|
| 35 |
"dogging",
|
|
|
|
| 36 |
"doggystyle",
|
| 37 |
"dominatrix",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
"erotic",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
"fellatio",
|
| 40 |
"femdom",
|
|
|
|
|
|
|
|
|
|
| 41 |
"fingering",
|
|
|
|
|
|
|
| 42 |
"fisting",
|
|
|
|
|
|
|
|
|
|
| 43 |
"footjob",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
"gangbang",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
"handjob",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
"hentai",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
"horney",
|
| 48 |
"horniest",
|
| 49 |
"horny",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
"jism",
|
| 51 |
"jizz",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
"masterbating",
|
|
|
|
| 53 |
"masturbate",
|
| 54 |
"masturbating",
|
| 55 |
"masturbation",
|
| 56 |
"milf",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
"orgies",
|
| 58 |
"orgy",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
"pegging",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
"porn",
|
| 61 |
+
"pornhub",
|
| 62 |
"porno",
|
|
|
|
| 63 |
"pornos",
|
| 64 |
+
"pornstar",
|
| 65 |
+
"pornstars",
|
| 66 |
+
"redtube",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
"rimming",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
"slutty",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
"squirting",
|
|
|
|
|
|
|
| 70 |
"strapon",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
"threesome",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
"vibrator",
|
| 73 |
+
"xhamster",
|
| 74 |
+
"xnxx",
|
| 75 |
+
"xvideos",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
"xxx",
|
| 77 |
+
"youporn",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
]
|
| 79 |
|
| 80 |
+
|
| 81 |
+
flagged_words = {
|
| 82 |
+
"ar": english_flagged_words
|
| 83 |
+ [
|
| 84 |
"احتلام",
|
| 85 |
"اغتصاب",
|
|
|
|
| 120 |
"مفلقسة",
|
| 121 |
"نيك",
|
| 122 |
],
|
| 123 |
+
"ca": english_flagged_words
|
| 124 |
+ [
|
|
|
|
| 125 |
"anal",
|
| 126 |
"anus",
|
| 127 |
"cul",
|
|
|
|
| 254 |
"x classificat",
|
| 255 |
"xxx",
|
| 256 |
],
|
| 257 |
+
"en": english_flagged_words,
|
| 258 |
+
"es": english_flagged_words
|
| 259 |
+ [
|
| 260 |
"Asesinato",
|
| 261 |
"Bollera",
|
|
|
|
| 436 |
"tirón",
|
| 437 |
"tizón",
|
| 438 |
"tonto",
|
|
|
|
| 439 |
"vagina",
|
| 440 |
"vete a la mierda",
|
| 441 |
"viagra",
|
|
|
|
| 447 |
"xxx",
|
| 448 |
"zurullo",
|
| 449 |
],
|
| 450 |
+
"eu": english_flagged_words
|
| 451 |
+ [
|
| 452 |
"abortu",
|
| 453 |
"anal",
|
|
|
|
| 488 |
"bagina",
|
| 489 |
"viagra",
|
| 490 |
],
|
| 491 |
+
"fr": english_flagged_words
|
| 492 |
+ [
|
| 493 |
"MALPT",
|
| 494 |
"anal",
|
| 495 |
"anus",
|
| 496 |
"arracher",
|
|
|
|
| 497 |
"baise",
|
| 498 |
"baiser",
|
| 499 |
"baiseur de chien",
|
|
|
|
| 666 |
"testicule",
|
| 667 |
"teuch",
|
| 668 |
"titt",
|
|
|
|
| 669 |
"tremper",
|
| 670 |
"tringler",
|
| 671 |
"trique",
|
|
|
|
| 689 |
"éjaculé",
|
| 690 |
"étron",
|
| 691 |
],
|
| 692 |
+
"hi": english_flagged_words
|
| 693 |
+ [
|
| 694 |
"aand",
|
| 695 |
"aandu",
|
|
|
|
| 750 |
"fagging",
|
| 751 |
"fagots",
|
| 752 |
"felching",
|
|
|
|
| 753 |
"fuckings",
|
| 754 |
"fucks",
|
| 755 |
"gaand",
|
|
|
|
| 947 |
"होमोसेक्सुअल",
|
| 948 |
"होर",
|
| 949 |
],
|
| 950 |
+
"id": english_flagged_words
|
| 951 |
+ [
|
| 952 |
"abortus",
|
| 953 |
"anal",
|
|
|
|
| 1065 |
"x diberi peringkat",
|
| 1066 |
"xxx",
|
| 1067 |
],
|
| 1068 |
+
"kn": english_flagged_words
|
| 1069 |
+ [
|
| 1070 |
"ಗರ್ಭಪಾತ",
|
| 1071 |
"ಗುದ",
|
|
|
|
| 1208 |
"x ರೇಟೆಡ್",
|
| 1209 |
"xxx",
|
| 1210 |
],
|
| 1211 |
+
"ml": english_flagged_words
|
| 1212 |
+ [
|
| 1213 |
"ഗർഭഛിദ്രം",
|
| 1214 |
"വ��ശപ്പ്",
|
|
|
|
| 1345 |
"x റേറ്റുചെയ്തു",
|
| 1346 |
"xxx",
|
| 1347 |
],
|
| 1348 |
+
"mr": english_flagged_words
|
| 1349 |
+ [
|
| 1350 |
"गर्भपात",
|
| 1351 |
"गुदा",
|
|
|
|
| 1484 |
"एक्स रेट केले",
|
| 1485 |
"xxx",
|
| 1486 |
],
|
| 1487 |
+
"pt": english_flagged_words
|
| 1488 |
+ [
|
| 1489 |
"aborto",
|
| 1490 |
"amador",
|
|
|
|
| 1586 |
"gozar",
|
| 1587 |
"grelho",
|
| 1588 |
"heroína",
|
|
|
|
| 1589 |
"homoerótico",
|
| 1590 |
"homosexual",
|
| 1591 |
"hore",
|
|
|
|
| 1682 |
"xxx",
|
| 1683 |
"ânus",
|
| 1684 |
],
|
| 1685 |
+
"te": english_flagged_words
|
| 1686 |
+ [
|
| 1687 |
"గర్భస్రావం",
|
| 1688 |
"అంగ",
|
|
|
|
| 1829 |
"x రేట్",
|
| 1830 |
"xxx",
|
| 1831 |
],
|
| 1832 |
+
"vi": english_flagged_words
|
| 1833 |
+ [
|
| 1834 |
"sự phá thai",
|
| 1835 |
"hậu môn",
|
|
|
|
| 1947 |
"x đánh giá",
|
| 1948 |
"xxx",
|
| 1949 |
],
|
| 1950 |
+
"zh": english_flagged_words
|
| 1951 |
+ [
|
| 1952 |
"13.",
|
| 1953 |
"13点",
|
languages_id.py
CHANGED
|
@@ -6,7 +6,7 @@ langs_id = [
|
|
| 6 |
"lang": "Afrikaans",
|
| 7 |
"dataset_id": "af",
|
| 8 |
"stopwords_id": "af",
|
| 9 |
-
"
|
| 10 |
"fasttext_id": "af",
|
| 11 |
"sentencepiece_id": "af",
|
| 12 |
"kenlm_id": "af",
|
|
@@ -15,7 +15,7 @@ langs_id = [
|
|
| 15 |
"lang": "Arabic",
|
| 16 |
"dataset_id": "ar",
|
| 17 |
"stopwords_id": "ar",
|
| 18 |
-
"
|
| 19 |
"fasttext_id": "ar",
|
| 20 |
"sentencepiece_id": "ar",
|
| 21 |
"kenlm_id": "ar",
|
|
@@ -24,7 +24,7 @@ langs_id = [
|
|
| 24 |
"lang": "Egyptian Arabic",
|
| 25 |
"dataset_id": "arz",
|
| 26 |
"stopwords_id": None,
|
| 27 |
-
"
|
| 28 |
"fasttext_id": "arz",
|
| 29 |
"sentencepiece_id": None,
|
| 30 |
"kenlm_id": None,
|
|
@@ -33,7 +33,7 @@ langs_id = [
|
|
| 33 |
"lang": "Assamese",
|
| 34 |
"dataset_id": "as",
|
| 35 |
"stopwords_id": None,
|
| 36 |
-
"
|
| 37 |
"fasttext_id": "as",
|
| 38 |
"sentencepiece_id": None,
|
| 39 |
"kenlm_id": None,
|
|
@@ -42,7 +42,7 @@ langs_id = [
|
|
| 42 |
"lang": "Bengali",
|
| 43 |
"dataset_id": "bn",
|
| 44 |
"stopwords_id": "bn",
|
| 45 |
-
"
|
| 46 |
"fasttext_id": "bn",
|
| 47 |
"sentencepiece_id": "bn",
|
| 48 |
"kenlm_id": "bn",
|
|
@@ -51,7 +51,7 @@ langs_id = [
|
|
| 51 |
"lang": "Catalan",
|
| 52 |
"dataset_id": "ca",
|
| 53 |
"stopwords_id": "ca",
|
| 54 |
-
"
|
| 55 |
"fasttext_id": "ca",
|
| 56 |
"sentencepiece_id": "ca",
|
| 57 |
"kenlm_id": "ca",
|
|
@@ -60,7 +60,7 @@ langs_id = [
|
|
| 60 |
"lang": "English",
|
| 61 |
"dataset_id": "en",
|
| 62 |
"stopwords_id": "en",
|
| 63 |
-
"
|
| 64 |
"fasttext_id": "en",
|
| 65 |
"sentencepiece_id": "en",
|
| 66 |
"kenlm_id": "en",
|
|
@@ -69,7 +69,7 @@ langs_id = [
|
|
| 69 |
"lang": "Spanish",
|
| 70 |
"dataset_id": "es",
|
| 71 |
"stopwords_id": "es",
|
| 72 |
-
"
|
| 73 |
"fasttext_id": "es",
|
| 74 |
"sentencepiece_id": "es",
|
| 75 |
"kenlm_id": "es",
|
|
@@ -78,7 +78,7 @@ langs_id = [
|
|
| 78 |
"lang": "Basque",
|
| 79 |
"dataset_id": "eu",
|
| 80 |
"stopwords_id": "eu",
|
| 81 |
-
"
|
| 82 |
"fasttext_id": "eu",
|
| 83 |
"sentencepiece_id": None,
|
| 84 |
"kenlm_id": None,
|
|
@@ -87,7 +87,7 @@ langs_id = [
|
|
| 87 |
"lang": "French",
|
| 88 |
"dataset_id": "fr",
|
| 89 |
"stopwords_id": "fr",
|
| 90 |
-
"
|
| 91 |
"fasttext_id": "fr",
|
| 92 |
"sentencepiece_id": "fr",
|
| 93 |
"kenlm_id": "fr",
|
|
@@ -96,7 +96,7 @@ langs_id = [
|
|
| 96 |
"lang": "Gujarati",
|
| 97 |
"dataset_id": "gu",
|
| 98 |
"stopwords_id": None,
|
| 99 |
-
"
|
| 100 |
"fasttext_id": "gu",
|
| 101 |
"sentencepiece_id": "gu",
|
| 102 |
"kenlm_id": "gu",
|
|
@@ -105,7 +105,7 @@ langs_id = [
|
|
| 105 |
"lang": "Hindi",
|
| 106 |
"dataset_id": "hi",
|
| 107 |
"stopwords_id": "hi",
|
| 108 |
-
"
|
| 109 |
"fasttext_id": "hi",
|
| 110 |
"sentencepiece_id": "hi",
|
| 111 |
"kenlm_id": "hi",
|
|
@@ -114,7 +114,7 @@ langs_id = [
|
|
| 114 |
"lang": "Indonesian",
|
| 115 |
"dataset_id": "id",
|
| 116 |
"stopwords_id": "id",
|
| 117 |
-
"
|
| 118 |
"fasttext_id": "id",
|
| 119 |
"sentencepiece_id": "id",
|
| 120 |
"kenlm_id": "id",
|
|
@@ -123,7 +123,7 @@ langs_id = [
|
|
| 123 |
"lang": "Kannada",
|
| 124 |
"dataset_id": "kn",
|
| 125 |
"stopwords_id": None,
|
| 126 |
-
"
|
| 127 |
"fasttext_id": "kn",
|
| 128 |
"sentencepiece_id": "kn",
|
| 129 |
"kenlm_id": "kn",
|
|
@@ -132,7 +132,7 @@ langs_id = [
|
|
| 132 |
"lang": "Malayalam",
|
| 133 |
"dataset_id": "ml",
|
| 134 |
"stopwords_id": None,
|
| 135 |
-
"
|
| 136 |
"fasttext_id": "ml",
|
| 137 |
"sentencepiece_id": "ml",
|
| 138 |
"kenlm_id": "ml",
|
|
@@ -141,7 +141,7 @@ langs_id = [
|
|
| 141 |
"lang": "Marathi",
|
| 142 |
"dataset_id": "mr",
|
| 143 |
"stopwords_id": "mr",
|
| 144 |
-
"
|
| 145 |
"fasttext_id": "mr",
|
| 146 |
"sentencepiece_id": "mr",
|
| 147 |
"kenlm_id": "mr",
|
|
@@ -150,7 +150,7 @@ langs_id = [
|
|
| 150 |
"lang": "Portuguese",
|
| 151 |
"dataset_id": "pt",
|
| 152 |
"stopwords_id": "pt",
|
| 153 |
-
"
|
| 154 |
"fasttext_id": "pt",
|
| 155 |
"sentencepiece_id": "pt",
|
| 156 |
"kenlm_id": "pt",
|
|
@@ -159,7 +159,7 @@ langs_id = [
|
|
| 159 |
"lang": "Somali",
|
| 160 |
"dataset_id": "so",
|
| 161 |
"stopwords_id": "so",
|
| 162 |
-
"
|
| 163 |
"fasttext_id": "so",
|
| 164 |
"sentencepiece_id": None,
|
| 165 |
"kenlm_id": None,
|
|
@@ -168,7 +168,7 @@ langs_id = [
|
|
| 168 |
"lang": "Swahili",
|
| 169 |
"dataset_id": "sw",
|
| 170 |
"stopwords_id": "sw",
|
| 171 |
-
"
|
| 172 |
"fasttext_id": "sw",
|
| 173 |
"sentencepiece_id": None,
|
| 174 |
"kenlm_id": None,
|
|
@@ -177,7 +177,7 @@ langs_id = [
|
|
| 177 |
"lang": "Tamil",
|
| 178 |
"dataset_id": "ta",
|
| 179 |
"stopwords_id": None,
|
| 180 |
-
"
|
| 181 |
"fasttext_id": "ta",
|
| 182 |
"sentencepiece_id": None,
|
| 183 |
"kenlm_id": None,
|
|
@@ -186,7 +186,7 @@ langs_id = [
|
|
| 186 |
"lang": "Telugu",
|
| 187 |
"dataset_id": "te",
|
| 188 |
"stopwords_id": None,
|
| 189 |
-
"
|
| 190 |
"fasttext_id": "te",
|
| 191 |
"sentencepiece_id": None,
|
| 192 |
"kenlm_id": None,
|
|
@@ -195,7 +195,7 @@ langs_id = [
|
|
| 195 |
"lang": "Urdu",
|
| 196 |
"dataset_id": "ur",
|
| 197 |
"stopwords_id": "ur",
|
| 198 |
-
"
|
| 199 |
"fasttext_id": "ur",
|
| 200 |
"sentencepiece_id": None,
|
| 201 |
"kenlm_id": None,
|
|
@@ -204,7 +204,7 @@ langs_id = [
|
|
| 204 |
"lang": "Vietnamese",
|
| 205 |
"dataset_id": "vi",
|
| 206 |
"stopwords_id": "vi",
|
| 207 |
-
"
|
| 208 |
"fasttext_id": "vi",
|
| 209 |
"sentencepiece_id": None,
|
| 210 |
"kenlm_id": None,
|
|
@@ -213,7 +213,7 @@ langs_id = [
|
|
| 213 |
"lang": "Yoruba",
|
| 214 |
"dataset_id": "yo",
|
| 215 |
"stopwords_id": "yo",
|
| 216 |
-
"
|
| 217 |
"fasttext_id": "yo",
|
| 218 |
"sentencepiece_id": None,
|
| 219 |
"kenlm_id": None,
|
|
@@ -222,7 +222,7 @@ langs_id = [
|
|
| 222 |
"lang": "Chinese",
|
| 223 |
"dataset_id": "zh",
|
| 224 |
"stopwords_id": "zh",
|
| 225 |
-
"
|
| 226 |
"fasttext_id": "zh",
|
| 227 |
"sentencepiece_id": "zh",
|
| 228 |
"kenlm_id": "zh",
|
|
|
|
| 6 |
"lang": "Afrikaans",
|
| 7 |
"dataset_id": "af",
|
| 8 |
"stopwords_id": "af",
|
| 9 |
+
"flagged_words_id": None,
|
| 10 |
"fasttext_id": "af",
|
| 11 |
"sentencepiece_id": "af",
|
| 12 |
"kenlm_id": "af",
|
|
|
|
| 15 |
"lang": "Arabic",
|
| 16 |
"dataset_id": "ar",
|
| 17 |
"stopwords_id": "ar",
|
| 18 |
+
"flagged_words_id": "ar",
|
| 19 |
"fasttext_id": "ar",
|
| 20 |
"sentencepiece_id": "ar",
|
| 21 |
"kenlm_id": "ar",
|
|
|
|
| 24 |
"lang": "Egyptian Arabic",
|
| 25 |
"dataset_id": "arz",
|
| 26 |
"stopwords_id": None,
|
| 27 |
+
"flagged_words_id": None,
|
| 28 |
"fasttext_id": "arz",
|
| 29 |
"sentencepiece_id": None,
|
| 30 |
"kenlm_id": None,
|
|
|
|
| 33 |
"lang": "Assamese",
|
| 34 |
"dataset_id": "as",
|
| 35 |
"stopwords_id": None,
|
| 36 |
+
"flagged_words_id": None,
|
| 37 |
"fasttext_id": "as",
|
| 38 |
"sentencepiece_id": None,
|
| 39 |
"kenlm_id": None,
|
|
|
|
| 42 |
"lang": "Bengali",
|
| 43 |
"dataset_id": "bn",
|
| 44 |
"stopwords_id": "bn",
|
| 45 |
+
"flagged_words_id": None,
|
| 46 |
"fasttext_id": "bn",
|
| 47 |
"sentencepiece_id": "bn",
|
| 48 |
"kenlm_id": "bn",
|
|
|
|
| 51 |
"lang": "Catalan",
|
| 52 |
"dataset_id": "ca",
|
| 53 |
"stopwords_id": "ca",
|
| 54 |
+
"flagged_words_id": "ca",
|
| 55 |
"fasttext_id": "ca",
|
| 56 |
"sentencepiece_id": "ca",
|
| 57 |
"kenlm_id": "ca",
|
|
|
|
| 60 |
"lang": "English",
|
| 61 |
"dataset_id": "en",
|
| 62 |
"stopwords_id": "en",
|
| 63 |
+
"flagged_words_id": "en",
|
| 64 |
"fasttext_id": "en",
|
| 65 |
"sentencepiece_id": "en",
|
| 66 |
"kenlm_id": "en",
|
|
|
|
| 69 |
"lang": "Spanish",
|
| 70 |
"dataset_id": "es",
|
| 71 |
"stopwords_id": "es",
|
| 72 |
+
"flagged_words_id": "es",
|
| 73 |
"fasttext_id": "es",
|
| 74 |
"sentencepiece_id": "es",
|
| 75 |
"kenlm_id": "es",
|
|
|
|
| 78 |
"lang": "Basque",
|
| 79 |
"dataset_id": "eu",
|
| 80 |
"stopwords_id": "eu",
|
| 81 |
+
"flagged_words_id": "eu",
|
| 82 |
"fasttext_id": "eu",
|
| 83 |
"sentencepiece_id": None,
|
| 84 |
"kenlm_id": None,
|
|
|
|
| 87 |
"lang": "French",
|
| 88 |
"dataset_id": "fr",
|
| 89 |
"stopwords_id": "fr",
|
| 90 |
+
"flagged_words_id": "fr",
|
| 91 |
"fasttext_id": "fr",
|
| 92 |
"sentencepiece_id": "fr",
|
| 93 |
"kenlm_id": "fr",
|
|
|
|
| 96 |
"lang": "Gujarati",
|
| 97 |
"dataset_id": "gu",
|
| 98 |
"stopwords_id": None,
|
| 99 |
+
"flagged_words_id": None,
|
| 100 |
"fasttext_id": "gu",
|
| 101 |
"sentencepiece_id": "gu",
|
| 102 |
"kenlm_id": "gu",
|
|
|
|
| 105 |
"lang": "Hindi",
|
| 106 |
"dataset_id": "hi",
|
| 107 |
"stopwords_id": "hi",
|
| 108 |
+
"flagged_words_id": "hi",
|
| 109 |
"fasttext_id": "hi",
|
| 110 |
"sentencepiece_id": "hi",
|
| 111 |
"kenlm_id": "hi",
|
|
|
|
| 114 |
"lang": "Indonesian",
|
| 115 |
"dataset_id": "id",
|
| 116 |
"stopwords_id": "id",
|
| 117 |
+
"flagged_words_id": "id",
|
| 118 |
"fasttext_id": "id",
|
| 119 |
"sentencepiece_id": "id",
|
| 120 |
"kenlm_id": "id",
|
|
|
|
| 123 |
"lang": "Kannada",
|
| 124 |
"dataset_id": "kn",
|
| 125 |
"stopwords_id": None,
|
| 126 |
+
"flagged_words_id": "kn",
|
| 127 |
"fasttext_id": "kn",
|
| 128 |
"sentencepiece_id": "kn",
|
| 129 |
"kenlm_id": "kn",
|
|
|
|
| 132 |
"lang": "Malayalam",
|
| 133 |
"dataset_id": "ml",
|
| 134 |
"stopwords_id": None,
|
| 135 |
+
"flagged_words_id": "ml",
|
| 136 |
"fasttext_id": "ml",
|
| 137 |
"sentencepiece_id": "ml",
|
| 138 |
"kenlm_id": "ml",
|
|
|
|
| 141 |
"lang": "Marathi",
|
| 142 |
"dataset_id": "mr",
|
| 143 |
"stopwords_id": "mr",
|
| 144 |
+
"flagged_words_id": "mr",
|
| 145 |
"fasttext_id": "mr",
|
| 146 |
"sentencepiece_id": "mr",
|
| 147 |
"kenlm_id": "mr",
|
|
|
|
| 150 |
"lang": "Portuguese",
|
| 151 |
"dataset_id": "pt",
|
| 152 |
"stopwords_id": "pt",
|
| 153 |
+
"flagged_words_id": "pt",
|
| 154 |
"fasttext_id": "pt",
|
| 155 |
"sentencepiece_id": "pt",
|
| 156 |
"kenlm_id": "pt",
|
|
|
|
| 159 |
"lang": "Somali",
|
| 160 |
"dataset_id": "so",
|
| 161 |
"stopwords_id": "so",
|
| 162 |
+
"flagged_words_id": None,
|
| 163 |
"fasttext_id": "so",
|
| 164 |
"sentencepiece_id": None,
|
| 165 |
"kenlm_id": None,
|
|
|
|
| 168 |
"lang": "Swahili",
|
| 169 |
"dataset_id": "sw",
|
| 170 |
"stopwords_id": "sw",
|
| 171 |
+
"flagged_words_id": None,
|
| 172 |
"fasttext_id": "sw",
|
| 173 |
"sentencepiece_id": None,
|
| 174 |
"kenlm_id": None,
|
|
|
|
| 177 |
"lang": "Tamil",
|
| 178 |
"dataset_id": "ta",
|
| 179 |
"stopwords_id": None,
|
| 180 |
+
"flagged_words_id": None,
|
| 181 |
"fasttext_id": "ta",
|
| 182 |
"sentencepiece_id": None,
|
| 183 |
"kenlm_id": None,
|
|
|
|
| 186 |
"lang": "Telugu",
|
| 187 |
"dataset_id": "te",
|
| 188 |
"stopwords_id": None,
|
| 189 |
+
"flagged_words_id": "te",
|
| 190 |
"fasttext_id": "te",
|
| 191 |
"sentencepiece_id": None,
|
| 192 |
"kenlm_id": None,
|
|
|
|
| 195 |
"lang": "Urdu",
|
| 196 |
"dataset_id": "ur",
|
| 197 |
"stopwords_id": "ur",
|
| 198 |
+
"flagged_words_id": None,
|
| 199 |
"fasttext_id": "ur",
|
| 200 |
"sentencepiece_id": None,
|
| 201 |
"kenlm_id": None,
|
|
|
|
| 204 |
"lang": "Vietnamese",
|
| 205 |
"dataset_id": "vi",
|
| 206 |
"stopwords_id": "vi",
|
| 207 |
+
"flagged_words_id": "vi",
|
| 208 |
"fasttext_id": "vi",
|
| 209 |
"sentencepiece_id": None,
|
| 210 |
"kenlm_id": None,
|
|
|
|
| 213 |
"lang": "Yoruba",
|
| 214 |
"dataset_id": "yo",
|
| 215 |
"stopwords_id": "yo",
|
| 216 |
+
"flagged_words_id": None,
|
| 217 |
"fasttext_id": "yo",
|
| 218 |
"sentencepiece_id": None,
|
| 219 |
"kenlm_id": None,
|
|
|
|
| 222 |
"lang": "Chinese",
|
| 223 |
"dataset_id": "zh",
|
| 224 |
"stopwords_id": "zh",
|
| 225 |
+
"flagged_words_id": "zh",
|
| 226 |
"fasttext_id": "zh",
|
| 227 |
"sentencepiece_id": "zh",
|
| 228 |
"kenlm_id": "zh",
|
parameters_filtering.py
CHANGED
|
@@ -39,8 +39,8 @@ parameters_filtering_default = {
|
|
| 39 |
"words_augmentation_join_char": "",
|
| 40 |
"cond_check_stopwords": False,
|
| 41 |
"stopwords_min_cutoff": 0,
|
| 42 |
-
"
|
| 43 |
-
"
|
| 44 |
"cond_check_lang_id": True,
|
| 45 |
"lang_id_min_cutoff": 0.70,
|
| 46 |
"cond_check_perplexity": False,
|
|
@@ -70,8 +70,8 @@ parameters_filtering_af = {
|
|
| 70 |
"words_augmentation_join_char": "",
|
| 71 |
"cond_check_stopwords": True,
|
| 72 |
"stopwords_min_cutoff": 0,
|
| 73 |
-
"
|
| 74 |
-
"
|
| 75 |
"cond_check_lang_id": True,
|
| 76 |
"lang_id_min_cutoff": 0.6,
|
| 77 |
"cond_check_perplexity": True,
|
|
@@ -101,8 +101,8 @@ parameters_filtering_ar = {
|
|
| 101 |
"words_augmentation_join_char": "",
|
| 102 |
"cond_check_stopwords": True,
|
| 103 |
"stopwords_min_cutoff": 0,
|
| 104 |
-
"
|
| 105 |
-
"
|
| 106 |
"cond_check_lang_id": True,
|
| 107 |
"lang_id_min_cutoff": 0.75,
|
| 108 |
"cond_check_perplexity": True,
|
|
@@ -132,8 +132,8 @@ parameters_filtering_arz = {
|
|
| 132 |
"words_augmentation_join_char": "",
|
| 133 |
"cond_check_stopwords": True,
|
| 134 |
"stopwords_min_cutoff": 0,
|
| 135 |
-
"
|
| 136 |
-
"
|
| 137 |
"cond_check_lang_id": True,
|
| 138 |
"lang_id_min_cutoff": 0.75,
|
| 139 |
"cond_check_perplexity": False,
|
|
@@ -163,8 +163,8 @@ parameters_filtering_as = {
|
|
| 163 |
"words_augmentation_join_char": "",
|
| 164 |
"cond_check_stopwords": True,
|
| 165 |
"stopwords_min_cutoff": 0,
|
| 166 |
-
"
|
| 167 |
-
"
|
| 168 |
"cond_check_lang_id": True,
|
| 169 |
"lang_id_min_cutoff": 0.75,
|
| 170 |
"cond_check_perplexity": False,
|
|
@@ -194,8 +194,8 @@ parameters_filtering_bn = {
|
|
| 194 |
"words_augmentation_join_char": "",
|
| 195 |
"cond_check_stopwords": True,
|
| 196 |
"stopwords_min_cutoff": 0.05,
|
| 197 |
-
"
|
| 198 |
-
"
|
| 199 |
"cond_check_lang_id": True,
|
| 200 |
"lang_id_min_cutoff": 0.75,
|
| 201 |
"cond_check_perplexity": False,
|
|
@@ -225,8 +225,8 @@ parameters_filtering_ca = {
|
|
| 225 |
"words_augmentation_join_char": "",
|
| 226 |
"cond_check_stopwords": True,
|
| 227 |
"stopwords_min_cutoff": 0,
|
| 228 |
-
"
|
| 229 |
-
"
|
| 230 |
"cond_check_lang_id": True,
|
| 231 |
"lang_id_min_cutoff": 0.75,
|
| 232 |
"cond_check_perplexity": True,
|
|
@@ -256,8 +256,8 @@ parameters_filtering_en = {
|
|
| 256 |
"words_augmentation_join_char": "",
|
| 257 |
"cond_check_stopwords": True,
|
| 258 |
"stopwords_min_cutoff": 0.3,
|
| 259 |
-
"
|
| 260 |
-
"
|
| 261 |
"cond_check_lang_id": True,
|
| 262 |
"lang_id_min_cutoff": 0.80,
|
| 263 |
"cond_check_perplexity": True,
|
|
@@ -287,8 +287,8 @@ parameters_filtering_es = {
|
|
| 287 |
"words_augmentation_join_char": "",
|
| 288 |
"cond_check_stopwords": True,
|
| 289 |
"stopwords_min_cutoff": 0.2,
|
| 290 |
-
"
|
| 291 |
-
"
|
| 292 |
"cond_check_lang_id": True,
|
| 293 |
"lang_id_min_cutoff": 0.75,
|
| 294 |
"cond_check_perplexity": True,
|
|
@@ -318,8 +318,8 @@ parameters_filtering_eu = {
|
|
| 318 |
"words_augmentation_join_char": "",
|
| 319 |
"cond_check_stopwords": True,
|
| 320 |
"stopwords_min_cutoff": 0,
|
| 321 |
-
"
|
| 322 |
-
"
|
| 323 |
"cond_check_lang_id": True,
|
| 324 |
"lang_id_min_cutoff": 0.75,
|
| 325 |
"cond_check_perplexity": False,
|
|
@@ -349,8 +349,8 @@ parameters_filtering_fr = {
|
|
| 349 |
"words_augmentation_join_char": "",
|
| 350 |
"cond_check_stopwords": True,
|
| 351 |
"stopwords_min_cutoff": 0.15,
|
| 352 |
-
"
|
| 353 |
-
"
|
| 354 |
"cond_check_lang_id": True,
|
| 355 |
"lang_id_min_cutoff": 0.75,
|
| 356 |
"cond_check_perplexity": True,
|
|
@@ -380,8 +380,8 @@ parameters_filtering_gu = {
|
|
| 380 |
"words_augmentation_join_char": "",
|
| 381 |
"cond_check_stopwords": True,
|
| 382 |
"stopwords_min_cutoff": 0,
|
| 383 |
-
"
|
| 384 |
-
"
|
| 385 |
"cond_check_lang_id": True,
|
| 386 |
"lang_id_min_cutoff": 0.75,
|
| 387 |
"cond_check_perplexity": True,
|
|
@@ -411,8 +411,8 @@ parameters_filtering_hi = {
|
|
| 411 |
"words_augmentation_join_char": "",
|
| 412 |
"cond_check_stopwords": True,
|
| 413 |
"stopwords_min_cutoff": 0,
|
| 414 |
-
"
|
| 415 |
-
"
|
| 416 |
"cond_check_lang_id": True,
|
| 417 |
"lang_id_min_cutoff": 0.75,
|
| 418 |
"cond_check_perplexity": True,
|
|
@@ -442,8 +442,8 @@ parameters_filtering_id = {
|
|
| 442 |
"words_augmentation_join_char": "",
|
| 443 |
"cond_check_stopwords": True,
|
| 444 |
"stopwords_min_cutoff": 0.25,
|
| 445 |
-
"
|
| 446 |
-
"
|
| 447 |
"cond_check_lang_id": True,
|
| 448 |
"lang_id_min_cutoff": 0.75,
|
| 449 |
"cond_check_perplexity": True,
|
|
@@ -473,8 +473,8 @@ parameters_filtering_kn = {
|
|
| 473 |
"words_augmentation_join_char": "",
|
| 474 |
"cond_check_stopwords": True,
|
| 475 |
"stopwords_min_cutoff": 0,
|
| 476 |
-
"
|
| 477 |
-
"
|
| 478 |
"cond_check_lang_id": True,
|
| 479 |
"lang_id_min_cutoff": 0.75,
|
| 480 |
"cond_check_perplexity": True,
|
|
@@ -504,8 +504,8 @@ parameters_filtering_ml = {
|
|
| 504 |
"words_augmentation_join_char": "",
|
| 505 |
"cond_check_stopwords": True,
|
| 506 |
"stopwords_min_cutoff": 0,
|
| 507 |
-
"
|
| 508 |
-
"
|
| 509 |
"cond_check_lang_id": True,
|
| 510 |
"lang_id_min_cutoff": 0.75,
|
| 511 |
"cond_check_perplexity": True,
|
|
@@ -535,8 +535,8 @@ parameters_filtering_mr = {
|
|
| 535 |
"words_augmentation_join_char": "",
|
| 536 |
"cond_check_stopwords": True,
|
| 537 |
"stopwords_min_cutoff": 0,
|
| 538 |
-
"
|
| 539 |
-
"
|
| 540 |
"cond_check_lang_id": True,
|
| 541 |
"lang_id_min_cutoff": 0.75,
|
| 542 |
"cond_check_perplexity": True,
|
|
@@ -566,8 +566,8 @@ parameters_filtering_pt = {
|
|
| 566 |
"words_augmentation_join_char": "",
|
| 567 |
"cond_check_stopwords": True,
|
| 568 |
"stopwords_min_cutoff": 0.15,
|
| 569 |
-
"
|
| 570 |
-
"
|
| 571 |
"cond_check_lang_id": True,
|
| 572 |
"lang_id_min_cutoff": 0.75,
|
| 573 |
"cond_check_perplexity": True,
|
|
@@ -597,8 +597,8 @@ parameters_filtering_so = {
|
|
| 597 |
"words_augmentation_join_char": "",
|
| 598 |
"cond_check_stopwords": False,
|
| 599 |
"stopwords_min_cutoff": 0,
|
| 600 |
-
"
|
| 601 |
-
"
|
| 602 |
"cond_check_lang_id": True,
|
| 603 |
"lang_id_min_cutoff": 0.75,
|
| 604 |
"cond_check_perplexity": False,
|
|
@@ -628,8 +628,8 @@ parameters_filtering_sw = {
|
|
| 628 |
"words_augmentation_join_char": "",
|
| 629 |
"cond_check_stopwords": True,
|
| 630 |
"stopwords_min_cutoff": 0,
|
| 631 |
-
"
|
| 632 |
-
"
|
| 633 |
"cond_check_lang_id": True,
|
| 634 |
"lang_id_min_cutoff": 0.75,
|
| 635 |
"cond_check_perplexity": False,
|
|
@@ -659,8 +659,8 @@ parameters_filtering_ta = {
|
|
| 659 |
"words_augmentation_join_char": "",
|
| 660 |
"cond_check_stopwords": True,
|
| 661 |
"stopwords_min_cutoff": 0,
|
| 662 |
-
"
|
| 663 |
-
"
|
| 664 |
"cond_check_lang_id": True,
|
| 665 |
"lang_id_min_cutoff": 0.75,
|
| 666 |
"cond_check_perplexity": False,
|
|
@@ -690,8 +690,8 @@ parameters_filtering_te = {
|
|
| 690 |
"words_augmentation_join_char": "",
|
| 691 |
"cond_check_stopwords": True,
|
| 692 |
"stopwords_min_cutoff": 0,
|
| 693 |
-
"
|
| 694 |
-
"
|
| 695 |
"cond_check_lang_id": True,
|
| 696 |
"lang_id_min_cutoff": 0.75,
|
| 697 |
"cond_check_perplexity": False,
|
|
@@ -721,8 +721,8 @@ parameters_filtering_ur = {
|
|
| 721 |
"words_augmentation_join_char": "",
|
| 722 |
"cond_check_stopwords": True,
|
| 723 |
"stopwords_min_cutoff": 0,
|
| 724 |
-
"
|
| 725 |
-
"
|
| 726 |
"cond_check_lang_id": True,
|
| 727 |
"lang_id_min_cutoff": 0.75,
|
| 728 |
"cond_check_perplexity": False,
|
|
@@ -752,8 +752,8 @@ parameters_filtering_vi = {
|
|
| 752 |
"words_augmentation_join_char": " ",
|
| 753 |
"cond_check_stopwords": True,
|
| 754 |
"stopwords_min_cutoff": 0,
|
| 755 |
-
"
|
| 756 |
-
"
|
| 757 |
"cond_check_lang_id": True,
|
| 758 |
"lang_id_min_cutoff": 0.75,
|
| 759 |
"cond_check_perplexity": False,
|
|
@@ -783,8 +783,8 @@ parameters_filtering_yo = {
|
|
| 783 |
"words_augmentation_join_char": "",
|
| 784 |
"cond_check_stopwords": True,
|
| 785 |
"stopwords_min_cutoff": 0,
|
| 786 |
-
"
|
| 787 |
-
"
|
| 788 |
"cond_check_lang_id": True,
|
| 789 |
"lang_id_min_cutoff": 0.75,
|
| 790 |
"cond_check_perplexity": False,
|
|
@@ -814,8 +814,8 @@ parameters_filtering_zh = {
|
|
| 814 |
"words_augmentation_join_char": "",
|
| 815 |
"cond_check_stopwords": False,
|
| 816 |
"stopwords_min_cutoff": 0,
|
| 817 |
-
"
|
| 818 |
-
"
|
| 819 |
"cond_check_lang_id": True,
|
| 820 |
"lang_id_min_cutoff": 0.75,
|
| 821 |
"cond_check_perplexity": False,
|
|
|
|
| 39 |
"words_augmentation_join_char": "",
|
| 40 |
"cond_check_stopwords": False,
|
| 41 |
"stopwords_min_cutoff": 0,
|
| 42 |
+
"cond_check_flagged_words": False,
|
| 43 |
+
"flagged_words_max_cutoff": 0.2,
|
| 44 |
"cond_check_lang_id": True,
|
| 45 |
"lang_id_min_cutoff": 0.70,
|
| 46 |
"cond_check_perplexity": False,
|
|
|
|
| 70 |
"words_augmentation_join_char": "",
|
| 71 |
"cond_check_stopwords": True,
|
| 72 |
"stopwords_min_cutoff": 0,
|
| 73 |
+
"cond_check_flagged_words": False,
|
| 74 |
+
"flagged_words_max_cutoff": 0.2,
|
| 75 |
"cond_check_lang_id": True,
|
| 76 |
"lang_id_min_cutoff": 0.6,
|
| 77 |
"cond_check_perplexity": True,
|
|
|
|
| 101 |
"words_augmentation_join_char": "",
|
| 102 |
"cond_check_stopwords": True,
|
| 103 |
"stopwords_min_cutoff": 0,
|
| 104 |
+
"cond_check_flagged_words": False,
|
| 105 |
+
"flagged_words_max_cutoff": 0.2,
|
| 106 |
"cond_check_lang_id": True,
|
| 107 |
"lang_id_min_cutoff": 0.75,
|
| 108 |
"cond_check_perplexity": True,
|
|
|
|
| 132 |
"words_augmentation_join_char": "",
|
| 133 |
"cond_check_stopwords": True,
|
| 134 |
"stopwords_min_cutoff": 0,
|
| 135 |
+
"cond_check_flagged_words": False,
|
| 136 |
+
"flagged_words_max_cutoff": 0.2,
|
| 137 |
"cond_check_lang_id": True,
|
| 138 |
"lang_id_min_cutoff": 0.75,
|
| 139 |
"cond_check_perplexity": False,
|
|
|
|
| 163 |
"words_augmentation_join_char": "",
|
| 164 |
"cond_check_stopwords": True,
|
| 165 |
"stopwords_min_cutoff": 0,
|
| 166 |
+
"cond_check_flagged_words": False,
|
| 167 |
+
"flagged_words_max_cutoff": 0.2,
|
| 168 |
"cond_check_lang_id": True,
|
| 169 |
"lang_id_min_cutoff": 0.75,
|
| 170 |
"cond_check_perplexity": False,
|
|
|
|
| 194 |
"words_augmentation_join_char": "",
|
| 195 |
"cond_check_stopwords": True,
|
| 196 |
"stopwords_min_cutoff": 0.05,
|
| 197 |
+
"cond_check_flagged_words": False,
|
| 198 |
+
"flagged_words_max_cutoff": 0.2,
|
| 199 |
"cond_check_lang_id": True,
|
| 200 |
"lang_id_min_cutoff": 0.75,
|
| 201 |
"cond_check_perplexity": False,
|
|
|
|
| 225 |
"words_augmentation_join_char": "",
|
| 226 |
"cond_check_stopwords": True,
|
| 227 |
"stopwords_min_cutoff": 0,
|
| 228 |
+
"cond_check_flagged_words": False,
|
| 229 |
+
"flagged_words_max_cutoff": 0.2,
|
| 230 |
"cond_check_lang_id": True,
|
| 231 |
"lang_id_min_cutoff": 0.75,
|
| 232 |
"cond_check_perplexity": True,
|
|
|
|
| 256 |
"words_augmentation_join_char": "",
|
| 257 |
"cond_check_stopwords": True,
|
| 258 |
"stopwords_min_cutoff": 0.3,
|
| 259 |
+
"cond_check_flagged_words": True,
|
| 260 |
+
"flagged_words_max_cutoff": 0.045,
|
| 261 |
"cond_check_lang_id": True,
|
| 262 |
"lang_id_min_cutoff": 0.80,
|
| 263 |
"cond_check_perplexity": True,
|
|
|
|
| 287 |
"words_augmentation_join_char": "",
|
| 288 |
"cond_check_stopwords": True,
|
| 289 |
"stopwords_min_cutoff": 0.2,
|
| 290 |
+
"cond_check_flagged_words": False,
|
| 291 |
+
"flagged_words_max_cutoff": 0.2,
|
| 292 |
"cond_check_lang_id": True,
|
| 293 |
"lang_id_min_cutoff": 0.75,
|
| 294 |
"cond_check_perplexity": True,
|
|
|
|
| 318 |
"words_augmentation_join_char": "",
|
| 319 |
"cond_check_stopwords": True,
|
| 320 |
"stopwords_min_cutoff": 0,
|
| 321 |
+
"cond_check_flagged_words": False,
|
| 322 |
+
"flagged_words_max_cutoff": 0.2,
|
| 323 |
"cond_check_lang_id": True,
|
| 324 |
"lang_id_min_cutoff": 0.75,
|
| 325 |
"cond_check_perplexity": False,
|
|
|
|
| 349 |
"words_augmentation_join_char": "",
|
| 350 |
"cond_check_stopwords": True,
|
| 351 |
"stopwords_min_cutoff": 0.15,
|
| 352 |
+
"cond_check_flagged_words": False,
|
| 353 |
+
"flagged_words_max_cutoff": 0.2,
|
| 354 |
"cond_check_lang_id": True,
|
| 355 |
"lang_id_min_cutoff": 0.75,
|
| 356 |
"cond_check_perplexity": True,
|
|
|
|
| 380 |
"words_augmentation_join_char": "",
|
| 381 |
"cond_check_stopwords": True,
|
| 382 |
"stopwords_min_cutoff": 0,
|
| 383 |
+
"cond_check_flagged_words": False,
|
| 384 |
+
"flagged_words_max_cutoff": 0.2,
|
| 385 |
"cond_check_lang_id": True,
|
| 386 |
"lang_id_min_cutoff": 0.75,
|
| 387 |
"cond_check_perplexity": True,
|
|
|
|
| 411 |
"words_augmentation_join_char": "",
|
| 412 |
"cond_check_stopwords": True,
|
| 413 |
"stopwords_min_cutoff": 0,
|
| 414 |
+
"cond_check_flagged_words": False,
|
| 415 |
+
"flagged_words_max_cutoff": 0.2,
|
| 416 |
"cond_check_lang_id": True,
|
| 417 |
"lang_id_min_cutoff": 0.75,
|
| 418 |
"cond_check_perplexity": True,
|
|
|
|
| 442 |
"words_augmentation_join_char": "",
|
| 443 |
"cond_check_stopwords": True,
|
| 444 |
"stopwords_min_cutoff": 0.25,
|
| 445 |
+
"cond_check_flagged_words": False,
|
| 446 |
+
"flagged_words_max_cutoff": 0.2,
|
| 447 |
"cond_check_lang_id": True,
|
| 448 |
"lang_id_min_cutoff": 0.75,
|
| 449 |
"cond_check_perplexity": True,
|
|
|
|
| 473 |
"words_augmentation_join_char": "",
|
| 474 |
"cond_check_stopwords": True,
|
| 475 |
"stopwords_min_cutoff": 0,
|
| 476 |
+
"cond_check_flagged_words": False,
|
| 477 |
+
"flagged_words_max_cutoff": 0.2,
|
| 478 |
"cond_check_lang_id": True,
|
| 479 |
"lang_id_min_cutoff": 0.75,
|
| 480 |
"cond_check_perplexity": True,
|
|
|
|
| 504 |
"words_augmentation_join_char": "",
|
| 505 |
"cond_check_stopwords": True,
|
| 506 |
"stopwords_min_cutoff": 0,
|
| 507 |
+
"cond_check_flagged_words": False,
|
| 508 |
+
"flagged_words_max_cutoff": 0.2,
|
| 509 |
"cond_check_lang_id": True,
|
| 510 |
"lang_id_min_cutoff": 0.75,
|
| 511 |
"cond_check_perplexity": True,
|
|
|
|
| 535 |
"words_augmentation_join_char": "",
|
| 536 |
"cond_check_stopwords": True,
|
| 537 |
"stopwords_min_cutoff": 0,
|
| 538 |
+
"cond_check_flagged_words": False,
|
| 539 |
+
"flagged_words_max_cutoff": 0.2,
|
| 540 |
"cond_check_lang_id": True,
|
| 541 |
"lang_id_min_cutoff": 0.75,
|
| 542 |
"cond_check_perplexity": True,
|
|
|
|
| 566 |
"words_augmentation_join_char": "",
|
| 567 |
"cond_check_stopwords": True,
|
| 568 |
"stopwords_min_cutoff": 0.15,
|
| 569 |
+
"cond_check_flagged_words": False,
|
| 570 |
+
"flagged_words_max_cutoff": 0.2,
|
| 571 |
"cond_check_lang_id": True,
|
| 572 |
"lang_id_min_cutoff": 0.75,
|
| 573 |
"cond_check_perplexity": True,
|
|
|
|
| 597 |
"words_augmentation_join_char": "",
|
| 598 |
"cond_check_stopwords": False,
|
| 599 |
"stopwords_min_cutoff": 0,
|
| 600 |
+
"cond_check_flagged_words": False,
|
| 601 |
+
"flagged_words_max_cutoff": 0.2,
|
| 602 |
"cond_check_lang_id": True,
|
| 603 |
"lang_id_min_cutoff": 0.75,
|
| 604 |
"cond_check_perplexity": False,
|
|
|
|
| 628 |
"words_augmentation_join_char": "",
|
| 629 |
"cond_check_stopwords": True,
|
| 630 |
"stopwords_min_cutoff": 0,
|
| 631 |
+
"cond_check_flagged_words": False,
|
| 632 |
+
"flagged_words_max_cutoff": 0.2,
|
| 633 |
"cond_check_lang_id": True,
|
| 634 |
"lang_id_min_cutoff": 0.75,
|
| 635 |
"cond_check_perplexity": False,
|
|
|
|
| 659 |
"words_augmentation_join_char": "",
|
| 660 |
"cond_check_stopwords": True,
|
| 661 |
"stopwords_min_cutoff": 0,
|
| 662 |
+
"cond_check_flagged_words": False,
|
| 663 |
+
"flagged_words_max_cutoff": 0.2,
|
| 664 |
"cond_check_lang_id": True,
|
| 665 |
"lang_id_min_cutoff": 0.75,
|
| 666 |
"cond_check_perplexity": False,
|
|
|
|
| 690 |
"words_augmentation_join_char": "",
|
| 691 |
"cond_check_stopwords": True,
|
| 692 |
"stopwords_min_cutoff": 0,
|
| 693 |
+
"cond_check_flagged_words": False,
|
| 694 |
+
"flagged_words_max_cutoff": 0.2,
|
| 695 |
"cond_check_lang_id": True,
|
| 696 |
"lang_id_min_cutoff": 0.75,
|
| 697 |
"cond_check_perplexity": False,
|
|
|
|
| 721 |
"words_augmentation_join_char": "",
|
| 722 |
"cond_check_stopwords": True,
|
| 723 |
"stopwords_min_cutoff": 0,
|
| 724 |
+
"cond_check_flagged_words": False,
|
| 725 |
+
"flagged_words_max_cutoff": 0.2,
|
| 726 |
"cond_check_lang_id": True,
|
| 727 |
"lang_id_min_cutoff": 0.75,
|
| 728 |
"cond_check_perplexity": False,
|
|
|
|
| 752 |
"words_augmentation_join_char": " ",
|
| 753 |
"cond_check_stopwords": True,
|
| 754 |
"stopwords_min_cutoff": 0,
|
| 755 |
+
"cond_check_flagged_words": False,
|
| 756 |
+
"flagged_words_max_cutoff": 0.2,
|
| 757 |
"cond_check_lang_id": True,
|
| 758 |
"lang_id_min_cutoff": 0.75,
|
| 759 |
"cond_check_perplexity": False,
|
|
|
|
| 783 |
"words_augmentation_join_char": "",
|
| 784 |
"cond_check_stopwords": True,
|
| 785 |
"stopwords_min_cutoff": 0,
|
| 786 |
+
"cond_check_flagged_words": False,
|
| 787 |
+
"flagged_words_max_cutoff": 0.2,
|
| 788 |
"cond_check_lang_id": True,
|
| 789 |
"lang_id_min_cutoff": 0.75,
|
| 790 |
"cond_check_perplexity": False,
|
|
|
|
| 814 |
"words_augmentation_join_char": "",
|
| 815 |
"cond_check_stopwords": False,
|
| 816 |
"stopwords_min_cutoff": 0,
|
| 817 |
+
"cond_check_flagged_words": False,
|
| 818 |
+
"flagged_words_max_cutoff": 0.2,
|
| 819 |
"cond_check_lang_id": True,
|
| 820 |
"lang_id_min_cutoff": 0.75,
|
| 821 |
"cond_check_perplexity": False,
|