Spaces:
Sleeping
Sleeping
File size: 3,767 Bytes
b2f1c3e efe6851 b2f1c3e efe6851 b2f1c3e efe6851 b2f1c3e efe6851 1964ce2 b2f1c3e cceccd0 b2f1c3e cceccd0 efe6851 b2f1c3e efe6851 e22f095 efe6851 b2f1c3e b52658c b2f1c3e 8297363 b2f1c3e efe6851 b2f1c3e efe6851 b2f1c3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import re
import pickle
import numpy as np
import pandas as pd
svc = pickle.load(open('models/svc_model.sav', 'rb'))
tfidf = pickle.load(open('models/tfidf.sav', 'rb'))
svc_sentiment = pickle.load(open('models/sentiment_model.sav', 'rb'))
tfidf_sentiment = pickle.load(open('models/tfidf_sentiment.sav', 'rb'))
svc_touchpoint = pickle.load(open('models/touchpoint_model.sav', 'rb'))
tfidf_touchpoint = pickle.load(open('models/tfidf_touchpoint.sav', 'rb'))
labels = [
'Product quality', 'Knowledge',
'Appointment', 'Service etiquette', 'Waiting time',
'Repair speed', 'Repair cost', 'Repair quality', 'Warranty',
'Product replacement', 'Loan sets']
sample_file = pd.read_csv('sample.csv').to_csv(index=False).encode('utf-8')
print('utils imported!')
def get_single_prediction(text):
# manipulate data into a format that we pass to our model
text = text.lower().strip() #lower case
# Make topic predictions
text_vectors = tfidf.transform([text])
results = svc.predict_proba(text_vectors).squeeze().round(2)
pred_prob = pd.DataFrame({'topic': labels, 'probability': results}).sort_values('probability', ascending=True)
# Make sentiment predictions
text_vectors_sentiment = tfidf_sentiment.transform([text])
results_sentiment = svc_sentiment.predict_proba(text_vectors_sentiment).squeeze().round(2)
pred_prob_sentiment = pd.DataFrame({'sentiment': ['Negative', 'Positive'], 'probability': results_sentiment}).sort_values('probability', ascending=True)
# Make touchpoint predictions
text_vectors_touchpoint = tfidf_touchpoint.transform([text])
results_touchpoint = svc_touchpoint.predict_proba(text_vectors_touchpoint).squeeze().round(2)
pred_prob_touchpoint = pd.DataFrame({'touchpoint': ['ASC', 'CC', 'No touchpoint', 'Technician'], 'probability': results_touchpoint}).sort_values('probability', ascending=True)
return (pred_prob, pred_prob_sentiment, pred_prob_touchpoint)
def get_multiple_predictions(csv):
df = pd.read_csv(csv, encoding='latin')
df.columns = ['sequence']
df['sequence_clean'] = df['sequence'].str.lower().str.strip()
# Remove rows with blank string
invalid = df[(pd.isna(df['sequence_clean'])) | (df['sequence_clean'] == '')]
invalid.drop(columns=['sequence_clean'], inplace=True)
# Drop rows with blank string
df.dropna(inplace=True)
df = df[df['sequence_clean'] != ''].reset_index(drop=True)
# Vectorise text and get topic predictions
text_vectors = tfidf.transform(df['sequence_clean'])
pred_results = pd.DataFrame(svc.predict(text_vectors), columns = labels)
pred_results['others'] = pred_results[labels].max(axis=1)
pred_results['others'] = pred_results['others'].apply(lambda x: 1 if x == 0 else 0)
# Vectorise text and get sentiment predictions
text_vectors_sentiment = tfidf_sentiment.transform(df['sequence_clean'])
pred_results_sentiment = pd.DataFrame(svc_sentiment.predict(text_vectors_sentiment), columns = ['sentiment'])
# Vectorise text and get touchpoint predictions
text_vectors_touchpoint = tfidf_touchpoint.transform(df['sequence_clean'])
pred_results_touchpoint = pd.DataFrame(svc_touchpoint.predict(text_vectors_touchpoint), columns = ['touchpoint'])
# Join back to original sequence
final_results = df.join(pred_results).join(pred_results_sentiment).join(pred_results_touchpoint)
final_results.drop(columns=['sequence_clean'], inplace=True)
# Append invalid rows
if len(invalid) == 0:
return final_results.to_csv(index=False).encode('utf-8')
else:
return pd.concat([final_results, invalid]).reset_index(drop=True).to_csv(index=False).encode('utf-8') |