Spaces:
Sleeping
Sleeping
edit code
Browse files- .ipynb_checkpoints/utils-checkpoint.py +2 -2
- utils.py +2 -2
.ipynb_checkpoints/utils-checkpoint.py
CHANGED
@@ -59,6 +59,8 @@ def get_multiple_predictions(csv):
|
|
59 |
# Vectorise text and get topic predictions
|
60 |
text_vectors = tfidf.transform(df['sequence_clean'])
|
61 |
pred_results = pd.DataFrame(svc.predict(text_vectors), columns = labels)
|
|
|
|
|
62 |
|
63 |
# Vectorise text and get sentiment predictions
|
64 |
text_vectors_sentiment = tfidf_sentiment.transform(df['sequence_clean'])
|
@@ -66,8 +68,6 @@ def get_multiple_predictions(csv):
|
|
66 |
|
67 |
# Join back to original sequence
|
68 |
final_results = df.join(pred_results).join(pred_results_sentiment)
|
69 |
-
final_results['others'] = final_results[labels].max(axis=1)
|
70 |
-
final_results['others'] = final_results['others'].apply(lambda x: 1 if x == 0 else 0)
|
71 |
|
72 |
final_results.drop(columns=['sequence_clean'], inplace=True)
|
73 |
|
|
|
59 |
# Vectorise text and get topic predictions
|
60 |
text_vectors = tfidf.transform(df['sequence_clean'])
|
61 |
pred_results = pd.DataFrame(svc.predict(text_vectors), columns = labels)
|
62 |
+
pred_results['others'] = pred_results[labels].max(axis=1)
|
63 |
+
pred_results['others'] = pred_results['others'].apply(lambda x: 1 if x == 0 else 0)
|
64 |
|
65 |
# Vectorise text and get sentiment predictions
|
66 |
text_vectors_sentiment = tfidf_sentiment.transform(df['sequence_clean'])
|
|
|
68 |
|
69 |
# Join back to original sequence
|
70 |
final_results = df.join(pred_results).join(pred_results_sentiment)
|
|
|
|
|
71 |
|
72 |
final_results.drop(columns=['sequence_clean'], inplace=True)
|
73 |
|
utils.py
CHANGED
@@ -59,6 +59,8 @@ def get_multiple_predictions(csv):
|
|
59 |
# Vectorise text and get topic predictions
|
60 |
text_vectors = tfidf.transform(df['sequence_clean'])
|
61 |
pred_results = pd.DataFrame(svc.predict(text_vectors), columns = labels)
|
|
|
|
|
62 |
|
63 |
# Vectorise text and get sentiment predictions
|
64 |
text_vectors_sentiment = tfidf_sentiment.transform(df['sequence_clean'])
|
@@ -66,8 +68,6 @@ def get_multiple_predictions(csv):
|
|
66 |
|
67 |
# Join back to original sequence
|
68 |
final_results = df.join(pred_results).join(pred_results_sentiment)
|
69 |
-
final_results['others'] = final_results[labels].max(axis=1)
|
70 |
-
final_results['others'] = final_results['others'].apply(lambda x: 1 if x == 0 else 0)
|
71 |
|
72 |
final_results.drop(columns=['sequence_clean'], inplace=True)
|
73 |
|
|
|
59 |
# Vectorise text and get topic predictions
|
60 |
text_vectors = tfidf.transform(df['sequence_clean'])
|
61 |
pred_results = pd.DataFrame(svc.predict(text_vectors), columns = labels)
|
62 |
+
pred_results['others'] = pred_results[labels].max(axis=1)
|
63 |
+
pred_results['others'] = pred_results['others'].apply(lambda x: 1 if x == 0 else 0)
|
64 |
|
65 |
# Vectorise text and get sentiment predictions
|
66 |
text_vectors_sentiment = tfidf_sentiment.transform(df['sequence_clean'])
|
|
|
68 |
|
69 |
# Join back to original sequence
|
70 |
final_results = df.join(pred_results).join(pred_results_sentiment)
|
|
|
|
|
71 |
|
72 |
final_results.drop(columns=['sequence_clean'], inplace=True)
|
73 |
|