Spaces:
Sleeping
Sleeping
edit code
Browse files- .ipynb_checkpoints/utils-checkpoint.py +1 -1
- Untitled.ipynb +7 -23
- utils.py +1 -1
.ipynb_checkpoints/utils-checkpoint.py
CHANGED
@@ -28,7 +28,7 @@ def get_single_prediction(text):
|
|
28 |
text_vectors = tfidf.transform([text])
|
29 |
|
30 |
# Make topic predictions
|
31 |
-
results = svc.predict_proba(text_vectors
|
32 |
|
33 |
pred_prob = pd.DataFrame({'topic': labels, 'probability': results}).sort_values('probability', ascending=True)
|
34 |
|
|
|
28 |
text_vectors = tfidf.transform([text])
|
29 |
|
30 |
# Make topic predictions
|
31 |
+
results = svc.predict_proba(text_vectors).squeeze().round(2)
|
32 |
|
33 |
pred_prob = pd.DataFrame({'topic': labels, 'probability': results}).sort_values('probability', ascending=True)
|
34 |
|
Untitled.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"id": "8e91c310-bc69-4a28-9197-e180aaaa491f",
|
7 |
"metadata": {},
|
8 |
"outputs": [
|
@@ -40,9 +40,9 @@
|
|
40 |
" \n",
|
41 |
" # manipulate data into a format that we pass to our model\n",
|
42 |
" text = text.lower().strip() #lower case\n",
|
43 |
-
"\n",
|
44 |
" # Vectorise text and store in new dataframe. Sentence vector = average of word vectors\n",
|
45 |
-
" text_vectors = tfidf.transform(
|
46 |
" print(text_vectors.shape)\n",
|
47 |
" # Make topic predictions\n",
|
48 |
" results = svc.predict_proba(text_vectors).squeeze().round(2)\n",
|
@@ -59,7 +59,7 @@
|
|
59 |
},
|
60 |
{
|
61 |
"cell_type": "code",
|
62 |
-
"execution_count":
|
63 |
"id": "b940cb16-c287-4fef-accc-fa54f20c3864",
|
64 |
"metadata": {},
|
65 |
"outputs": [
|
@@ -67,25 +67,9 @@
|
|
67 |
"name": "stdout",
|
68 |
"output_type": "stream",
|
69 |
"text": [
|
70 |
-
"
|
71 |
-
"(
|
72 |
-
|
73 |
-
},
|
74 |
-
{
|
75 |
-
"ename": "ValueError",
|
76 |
-
"evalue": "Data must be 1-dimensional",
|
77 |
-
"output_type": "error",
|
78 |
-
"traceback": [
|
79 |
-
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
80 |
-
"\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)",
|
81 |
-
"\u001b[1;32m<ipython-input-11-5105897e9757>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mget_single_prediction\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'hello'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
|
82 |
-
"\u001b[1;32m<ipython-input-10-f4ad9599dac2>\u001b[0m in \u001b[0;36mget_single_prediction\u001b[1;34m(text)\u001b[0m\n\u001b[0;32m 32\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mresults\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 33\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 34\u001b[1;33m \u001b[0mpred_prob\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m{\u001b[0m\u001b[1;34m'topic'\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mlabels\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'probability'\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mresults\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msort_values\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'probability'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mascending\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 35\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 36\u001b[0m \u001b[1;31m# Make sentiment predictions\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
83 |
-
"\u001b[1;32mC:\\HA\\Python\\Anaconda\\lib\\site-packages\\pandas\\core\\frame.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, data, index, columns, dtype, copy)\u001b[0m\n\u001b[0;32m 527\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 528\u001b[0m \u001b[1;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 529\u001b[1;33m \u001b[0mmgr\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0minit_dict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mindex\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumns\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 530\u001b[0m \u001b[1;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mma\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mMaskedArray\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 531\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mma\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmrecords\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mmrecords\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
84 |
-
"\u001b[1;32mC:\\HA\\Python\\Anaconda\\lib\\site-packages\\pandas\\core\\internals\\construction.py\u001b[0m in \u001b[0;36minit_dict\u001b[1;34m(data, index, columns, dtype)\u001b[0m\n\u001b[0;32m 285\u001b[0m \u001b[0marr\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mis_datetime64tz_dtype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marr\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32melse\u001b[0m \u001b[0marr\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0marr\u001b[0m \u001b[1;32min\u001b[0m \u001b[0marrays\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 286\u001b[0m ]\n\u001b[1;32m--> 287\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0marrays_to_mgr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marrays\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdata_names\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mindex\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumns\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 288\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 289\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
|
85 |
-
"\u001b[1;32mC:\\HA\\Python\\Anaconda\\lib\\site-packages\\pandas\\core\\internals\\construction.py\u001b[0m in \u001b[0;36marrays_to_mgr\u001b[1;34m(arrays, arr_names, index, columns, dtype, verify_integrity)\u001b[0m\n\u001b[0;32m 83\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 84\u001b[0m \u001b[1;31m# don't force copy because getting jammed in an ndarray anyway\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 85\u001b[1;33m \u001b[0marrays\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_homogenize\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marrays\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mindex\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 86\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 87\u001b[0m \u001b[0mcolumns\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mensure_index\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
86 |
-
"\u001b[1;32mC:\\HA\\Python\\Anaconda\\lib\\site-packages\\pandas\\core\\internals\\construction.py\u001b[0m in \u001b[0;36m_homogenize\u001b[1;34m(data, index, dtype)\u001b[0m\n\u001b[0;32m 353\u001b[0m \u001b[0mval\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mval\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 354\u001b[0m \u001b[0mval\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlib\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfast_multiget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mval\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moindex\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_values\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdefault\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnan\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 355\u001b[1;33m val = sanitize_array(\n\u001b[0m\u001b[0;32m 356\u001b[0m \u001b[0mval\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mindex\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mraise_cast_failure\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 357\u001b[0m )\n",
|
87 |
-
"\u001b[1;32mC:\\HA\\Python\\Anaconda\\lib\\site-packages\\pandas\\core\\construction.py\u001b[0m in \u001b[0;36msanitize_array\u001b[1;34m(data, index, dtype, copy, raise_cast_failure)\u001b[0m\n\u001b[0;32m 527\u001b[0m \u001b[1;32melif\u001b[0m \u001b[0msubarr\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 528\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 529\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Data must be 1-dimensional\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 530\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 531\u001b[0m \u001b[0msubarr\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcom\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0masarray_tuplesafe\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
88 |
-
"\u001b[1;31mValueError\u001b[0m: Data must be 1-dimensional"
|
89 |
]
|
90 |
}
|
91 |
],
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 16,
|
6 |
"id": "8e91c310-bc69-4a28-9197-e180aaaa491f",
|
7 |
"metadata": {},
|
8 |
"outputs": [
|
|
|
40 |
" \n",
|
41 |
" # manipulate data into a format that we pass to our model\n",
|
42 |
" text = text.lower().strip() #lower case\n",
|
43 |
+
" print(list(text))\n",
|
44 |
" # Vectorise text and store in new dataframe. Sentence vector = average of word vectors\n",
|
45 |
+
" text_vectors = tfidf.transform([text])\n",
|
46 |
" print(text_vectors.shape)\n",
|
47 |
" # Make topic predictions\n",
|
48 |
" results = svc.predict_proba(text_vectors).squeeze().round(2)\n",
|
|
|
59 |
},
|
60 |
{
|
61 |
"cell_type": "code",
|
62 |
+
"execution_count": 17,
|
63 |
"id": "b940cb16-c287-4fef-accc-fa54f20c3864",
|
64 |
"metadata": {},
|
65 |
"outputs": [
|
|
|
67 |
"name": "stdout",
|
68 |
"output_type": "stream",
|
69 |
"text": [
|
70 |
+
"['h', 'e', 'l', 'l', 'o']\n",
|
71 |
+
"(1, 500)\n",
|
72 |
+
"(11,)\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
]
|
74 |
}
|
75 |
],
|
utils.py
CHANGED
@@ -28,7 +28,7 @@ def get_single_prediction(text):
|
|
28 |
text_vectors = tfidf.transform([text])
|
29 |
|
30 |
# Make topic predictions
|
31 |
-
results = svc.predict_proba(text_vectors
|
32 |
|
33 |
pred_prob = pd.DataFrame({'topic': labels, 'probability': results}).sort_values('probability', ascending=True)
|
34 |
|
|
|
28 |
text_vectors = tfidf.transform([text])
|
29 |
|
30 |
# Make topic predictions
|
31 |
+
results = svc.predict_proba(text_vectors).squeeze().round(2)
|
32 |
|
33 |
pred_prob = pd.DataFrame({'topic': labels, 'probability': results}).sort_values('probability', ascending=True)
|
34 |
|