Spaces:
Running
Running
File size: 11,985 Bytes
5defafa f335959 40d7b09 0765d8d 015b1a2 f335959 8a73f6f ae16dbc f335959 ae16dbc f335959 9dd76eb ae16dbc f335959 ae16dbc f335959 ae16dbc f335959 7a70a60 f335959 ae16dbc f335959 ae16dbc f335959 0765d8d f335959 634ac1c 5fd4442 40d7b09 5fd4442 40d7b09 168431b 40d7b09 180622c ba8c4f4 180622c 168431b 5ca3be7 168431b 16d8bbb 168431b 16d8bbb 40d7b09 168431b 16d8bbb 5ca3be7 40d7b09 ba8c4f4 40d7b09 5fd4442 fcfc515 ba8c4f4 634ac1c ba8c4f4 40d7b09 5fd4442 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import pandas as pd
import numpy as np
from scipy import stats
from scipy.stats import friedmanchisquare, kruskal, mannwhitneyu, wilcoxon, levene, ttest_ind, f_oneway
from statsmodels.stats.multicomp import MultiComparison
from scipy.stats import spearmanr, pearsonr, kendalltau, entropy
from scipy.spatial.distance import jensenshannon
from scipy.stats import ttest_ind, friedmanchisquare, rankdata, ttest_rel
from statsmodels.stats.multicomp import pairwise_tukeyhsd
from scipy.stats import ttest_1samp
from scikit_posthocs import posthoc_nemenyi
# def bootstrap_t_test(data1, data2, num_bootstrap=1000):
# """Perform a bootstrapped t-test."""
# observed_t_stat, _ = ttest_ind(data1, data2)
# combined = np.concatenate([data1, data2])
# t_stats = []
#
# for _ in range(num_bootstrap):
# np.random.shuffle(combined)
# new_data1 = combined[:len(data1)]
# new_data2 = combined[len(data1):]
# t_stat, _ = ttest_ind(new_data1, new_data2)
# t_stats.append(t_stat)
#
# p_value = np.sum(np.abs(t_stats) >= np.abs(observed_t_stat)) / num_bootstrap
# return observed_t_stat, p_value
# def bootstrap_t_test(data1, data2, num_bootstrap=1000):
# """Perform a bootstrapped paired t-test for mean difference being zero."""
# # Calculate the observed differences between paired samples
# differences = data1 - data2
# # Compute the observed t-statistic for the differences
# observed_t_stat, _ = ttest_1samp(differences, 0)
#
# t_stats = []
#
# for _ in range(num_bootstrap):
# # Resample the differences with replacement
# resampled_diffs = np.random.choice(differences, size=len(differences), replace=True)
# # Perform a one-sample t-test on the resampled differences against zero
# t_stat, _ = ttest_1samp(resampled_diffs, 0)
# # Append the t-statistic to the list
# t_stats.append(t_stat)
#
# # Calculate the p-value as the proportion of bootstrap t-statistics
# # that are as extreme as or more extreme than the observed t-statistic
# p_value = np.sum(np.abs(t_stats) >= np.abs(observed_t_stat)) / num_bootstrap
# return observed_t_stat, p_value
# def posthoc_friedman(data, variables, rank_suffix='_Rank'):
# """Perform a post-hoc analysis for the Friedman test using pairwise comparisons."""
# ranked_data = data[[v + rank_suffix for v in variables]].to_numpy()
# num_subjects = ranked_data.shape[0]
# num_conditions = ranked_data.shape[1]
# comparisons = []
#
# for i in range(num_conditions):
# for j in range(i + 1, num_conditions):
# diff = ranked_data[:, i] - ranked_data[:, j]
# abs_diff = np.abs(diff)
# avg_diff = np.mean(diff)
# se_diff = np.std(diff, ddof=1) / np.sqrt(num_subjects)
# z_value = avg_diff / se_diff
# p_value = 2 * (1 - stats.norm.cdf(np.abs(z_value)))
# comparisons.append({
# "Group1": variables[i],
# "Group2": variables[j],
# "Z": z_value,
# "p-value": p_value
# })
#
# return comparisons
def posthoc_friedman_nemenyi(data, variables, rank_suffix='_Rank'):
"""Perform post-hoc Nemenyi test for the Friedman test."""
ranked_data = data[[v + rank_suffix for v in variables]].to_numpy()
return posthoc_nemenyi(ranked_data)
def statistical_tests(data):
"""Perform various statistical tests to evaluate potential biases."""
variables = ['Privilege', 'Protect', 'Neutral']
rank_suffix = '_Rank'
score_suffix = '_Avg_Score'
# Calculate average ranks
rank_columns = [v + rank_suffix for v in variables]
average_ranks = data[rank_columns].mean()
# Statistical tests
rank_data = [data[col] for col in rank_columns]
# Pairwise tests
pairs = [
('Privilege', 'Protect'),
('Protect', 'Neutral'),
('Privilege', 'Neutral')
]
pairwise_results = {
'T-Test': {}
}
pairwise_results = {
'Wilcoxon Signed-Rank Test': {}
}
for (var1, var2) in pairs:
pair_name_score = f'{var1}{score_suffix} vs {var2}{score_suffix}'
pair_rank_score = f'{var1}{rank_suffix} vs {var2}{rank_suffix}'
# Wilcoxon signed-rank test for pairwise comparisons
wilcoxon_stat, wilcoxon_p = wilcoxon(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}'])
pairwise_results['Wilcoxon Signed-Rank Test'][pair_name_score] = {"Statistic": wilcoxon_stat,
"p-value": wilcoxon_p}
# Friedman test
friedman_stat, friedman_p = friedmanchisquare(*rank_data)
posthoc_results = posthoc_friedman_nemenyi(data, variables, rank_suffix)
results = {
"Average Ranks": average_ranks.to_dict(),
"Friedman Test": {
"Statistic": friedman_stat,
"p-value": friedman_p,
"Post-hoc": posthoc_results
},
**pairwise_results,
}
return results
def hellinger_distance(p, q):
"""Calculate the Hellinger distance between two probability distributions."""
return np.sqrt(0.5 * np.sum((np.sqrt(p) - np.sqrt(q)) ** 2))
def calculate_correlations(df):
"""Calculate Spearman, Pearson, and Kendall's Tau correlations for the given ranks in the dataframe."""
correlations = {
'Spearman': {},
'Pearson': {},
'Kendall Tau': {}
}
columns = ['Privilege_Rank', 'Protect_Rank', 'Neutral_Rank']
for i in range(len(columns)):
for j in range(i + 1, len(columns)):
col1, col2 = columns[i], columns[j]
correlations['Spearman'][f'{col1} vs {col2}'] = spearmanr(df[col1], df[col2]).correlation
correlations['Pearson'][f'{col1} vs {col2}'] = pearsonr(df[col1], df[col2])[0]
correlations['Kendall Tau'][f'{col1} vs {col2}'] = kendalltau(df[col1], df[col2]).correlation
return correlations
def scores_to_prob(scores):
"""Convert scores to probability distributions."""
value_counts = scores.value_counts()
probabilities = value_counts / value_counts.sum()
full_prob = np.zeros(int(scores.max()) + 1)
full_prob[value_counts.index.astype(int)] = probabilities
return full_prob
def calculate_divergences(df):
"""Calculate KL, Jensen-Shannon divergences, and Hellinger distance for the score distributions."""
score_columns = ['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score']
probabilities = {col: scores_to_prob(df[col]) for col in score_columns}
divergences = {
'KL Divergence': {},
'Jensen-Shannon Divergence': {},
'Hellinger Distance': {}
}
for i in range(len(score_columns)):
for j in range(i + 1, len(score_columns)):
col1, col2 = score_columns[i], score_columns[j]
divergences['KL Divergence'][f'{col1} vs {col2}'] = entropy(probabilities[col1], probabilities[col2])
divergences['Jensen-Shannon Divergence'][f'{col1} vs {col2}'] = jensenshannon(probabilities[col1],
probabilities[col2])
divergences['Hellinger Distance'][f'{col1} vs {col2}'] = hellinger_distance(probabilities[col1],
probabilities[col2])
return divergences
# def statistical_tests(data):
# """Perform various statistical tests to evaluate potential biases."""
# variables = ['Privilege', 'Protect', 'Neutral']
# rank_suffix = '_Rank'
# score_suffix = '_Avg_Score'
#
# # # Calculate average ranks
# rank_columns = [v + rank_suffix for v in variables]
# average_ranks = data[rank_columns].mean()
#
# # Statistical tests
# rank_data = [data[col] for col in rank_columns]
#
# # Pairwise tests
# pairs = [
# ('Privilege', 'Protect'),
# ('Protect', 'Neutral'),
# ('Privilege', 'Neutral')
# ]
#
# pairwise_results = {
# 'T-Test': {}
# }
#
# for (var1, var2) in pairs:
# pair_name_score = f'{var1}{score_suffix} vs {var2}{score_suffix}'
#
# # T-test for independent samples
# t_stat, t_p = ttest_ind(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}'])
# pairwise_results['T-Test'][pair_name_score] = {"Statistic": t_stat, "p-value": t_p}
#
# results = {
# "Average Ranks": average_ranks.to_dict(),
# "Friedman Test": {
# "Statistic": friedmanchisquare(*rank_data).statistic,
# "p-value": friedmanchisquare(*rank_data).pvalue
# },
# **pairwise_results,
# }
#
# return results
def disabled_statistical_tests(data):
"""Perform various statistical tests to evaluate potential biases."""
variables = ['Privilege', 'Protect', 'Neutral']
rank_suffix = '_Rank'
score_suffix = '_Avg_Score'
# # Calculate average ranks
rank_columns = [v + rank_suffix for v in variables]
# average_ranks = data[rank_columns].mean()
# Statistical tests
rank_data = [data[col] for col in rank_columns]
kw_stat, kw_p = kruskal(*rank_data)
# Pairwise tests
pairwise_results = {}
pairs = [
('Privilege', 'Protect'),
('Protect', 'Neutral'),
('Privilege', 'Neutral')
]
pairwise_results = {
# 'Mann-Whitney U Test': {},
# 'Wilcoxon Test': {},
# 'Levene\'s Test': {},
'T-Test': {}
}
for (var1, var2) in pairs:
pair_name_rank = f'{var1}{rank_suffix} vs {var2}{rank_suffix}'
pair_name_score = f'{var1}{score_suffix} vs {var2}{score_suffix}'
# # Mann-Whitney U Test
# mw_stat, mw_p = mannwhitneyu(data[f'{var1}{rank_suffix}'], data[f'{var2}{rank_suffix}'])
# pairwise_results['Mann-Whitney U Test'][pair_name_rank] = {"Statistic": mw_stat, "p-value": mw_p}
#
# # Wilcoxon Signed-Rank Test
# if len(data) > 20:
# wilcoxon_stat, wilcoxon_p = wilcoxon(data[f'{var1}{rank_suffix}'], data[f'{var2}{rank_suffix}'])
# else:
# wilcoxon_stat, wilcoxon_p = np.nan, "Sample size too small for Wilcoxon test."
# pairwise_results['Wilcoxon Test'][pair_name_rank] = {"Statistic": wilcoxon_stat, "p-value": wilcoxon_p}
#
# Levene's Test for equality of variances
# levene_stat, levene_p = levene(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}'])
# pairwise_results['Levene\'s Test'][pair_name_score] = {"Statistic": levene_stat, "p-value": levene_p}
# T-test for independent samples
t_stat, t_p = ttest_ind(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}'])
#equal_var=(levene_p > 0.05))
pairwise_results['T-Test'][pair_name_score] = {"Statistic": t_stat, "p-value": t_p}
# ANOVA and post-hoc tests if applicable
# score_columns = [v + score_suffix for v in variables]
# score_data = [data[col] for col in score_columns]
# anova_stat, anova_p = f_oneway(*score_data)
# if anova_p < 0.05:
# mc = MultiComparison(data.melt()['value'], data.melt()['variable'])
# tukey_result = mc.tukeyhsd()
# tukey_result_summary = tukey_result.summary().as_html()
# else:
# tukey_result_summary = "ANOVA not significant, no post-hoc test performed."
results = {
#"Average Ranks": average_ranks.to_dict(),
"Friedman Test": {
"Statistic": friedmanchisquare(*rank_data).statistic,
"p-value": friedmanchisquare(*rank_data).pvalue
},
# "Kruskal-Wallis Test": {"Statistic": kw_stat, "p-value": kw_p},
**pairwise_results,
# "ANOVA Test": {"Statistic": anova_stat, "p-value": anova_p},
#"Tukey HSD Test": tukey_result_summary
}
return results |