Spaces:
Running
Running
Zekun Wu
commited on
Commit
•
f335959
1
Parent(s):
634ac1c
update
Browse files- util/evaluation.py +131 -43
util/evaluation.py
CHANGED
@@ -1,12 +1,100 @@
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
|
|
3 |
from scipy.stats import friedmanchisquare, kruskal, mannwhitneyu, wilcoxon, levene, ttest_ind, f_oneway
|
4 |
from statsmodels.stats.multicomp import MultiComparison
|
5 |
|
6 |
-
import pandas as pd
|
7 |
-
import numpy as np
|
8 |
from scipy.stats import spearmanr, pearsonr, kendalltau, entropy
|
9 |
from scipy.spatial.distance import jensenshannon
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
|
12 |
def hellinger_distance(p, q):
|
@@ -59,47 +147,47 @@ def calculate_divergences(df):
|
|
59 |
probabilities[col2])
|
60 |
return divergences
|
61 |
|
62 |
-
def statistical_tests(data):
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
|
104 |
def disabled_statistical_tests(data):
|
105 |
"""Perform various statistical tests to evaluate potential biases."""
|
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
3 |
+
from scipy import stats
|
4 |
from scipy.stats import friedmanchisquare, kruskal, mannwhitneyu, wilcoxon, levene, ttest_ind, f_oneway
|
5 |
from statsmodels.stats.multicomp import MultiComparison
|
6 |
|
|
|
|
|
7 |
from scipy.stats import spearmanr, pearsonr, kendalltau, entropy
|
8 |
from scipy.spatial.distance import jensenshannon
|
9 |
+
from scipy.stats import ttest_ind, friedmanchisquare, rankdata
|
10 |
+
from statsmodels.stats.multicomp import pairwise_tukeyhsd
|
11 |
+
|
12 |
+
def bootstrap_t_test(data1, data2, num_bootstrap=1000):
|
13 |
+
"""Perform a bootstrapped t-test."""
|
14 |
+
observed_t_stat, _ = ttest_ind(data1, data2)
|
15 |
+
combined = np.concatenate([data1, data2])
|
16 |
+
t_stats = []
|
17 |
+
|
18 |
+
for _ in range(num_bootstrap):
|
19 |
+
np.random.shuffle(combined)
|
20 |
+
new_data1 = combined[:len(data1)]
|
21 |
+
new_data2 = combined[len(data1):]
|
22 |
+
t_stat, _ = ttest_ind(new_data1, new_data2)
|
23 |
+
t_stats.append(t_stat)
|
24 |
+
|
25 |
+
p_value = np.sum(np.abs(t_stats) >= np.abs(observed_t_stat)) / num_bootstrap
|
26 |
+
return observed_t_stat, p_value
|
27 |
+
|
28 |
+
def posthoc_friedman(data, variables, rank_suffix='_Rank'):
|
29 |
+
"""Perform a post-hoc analysis for the Friedman test using pairwise comparisons."""
|
30 |
+
ranked_data = data[[v + rank_suffix for v in variables]].to_numpy()
|
31 |
+
num_subjects = ranked_data.shape[0]
|
32 |
+
num_conditions = ranked_data.shape[1]
|
33 |
+
comparisons = []
|
34 |
+
|
35 |
+
for i in range(num_conditions):
|
36 |
+
for j in range(i + 1, num_conditions):
|
37 |
+
diff = ranked_data[:, i] - ranked_data[:, j]
|
38 |
+
abs_diff = np.abs(diff)
|
39 |
+
avg_diff = np.mean(diff)
|
40 |
+
se_diff = np.std(diff, ddof=1) / np.sqrt(num_subjects)
|
41 |
+
z_value = avg_diff / se_diff
|
42 |
+
p_value = 2 * (1 - stats.norm.cdf(np.abs(z_value)))
|
43 |
+
comparisons.append({
|
44 |
+
"Group1": variables[i],
|
45 |
+
"Group2": variables[j],
|
46 |
+
"Z": z_value,
|
47 |
+
"p-value": p_value
|
48 |
+
})
|
49 |
+
|
50 |
+
return comparisons
|
51 |
+
|
52 |
+
def statistical_tests(data):
|
53 |
+
"""Perform various statistical tests to evaluate potential biases."""
|
54 |
+
variables = ['Privilege', 'Protect', 'Neutral']
|
55 |
+
rank_suffix = '_Rank'
|
56 |
+
score_suffix = '_Avg_Score'
|
57 |
+
|
58 |
+
# Calculate average ranks
|
59 |
+
rank_columns = [v + rank_suffix for v in variables]
|
60 |
+
average_ranks = data[rank_columns].mean()
|
61 |
+
|
62 |
+
# Statistical tests
|
63 |
+
rank_data = [data[col] for col in rank_columns]
|
64 |
+
|
65 |
+
# Pairwise tests
|
66 |
+
pairs = [
|
67 |
+
('Privilege', 'Protect'),
|
68 |
+
('Protect', 'Neutral'),
|
69 |
+
('Privilege', 'Neutral')
|
70 |
+
]
|
71 |
+
|
72 |
+
pairwise_results = {
|
73 |
+
'T-Test': {}
|
74 |
+
}
|
75 |
+
|
76 |
+
for (var1, var2) in pairs:
|
77 |
+
pair_name_score = f'{var1}{score_suffix} vs {var2}{score_suffix}'
|
78 |
+
|
79 |
+
# Bootstrapped T-test for independent samples
|
80 |
+
t_stat, t_p = bootstrap_t_test(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}'])
|
81 |
+
pairwise_results['T-Test'][pair_name_score] = {"Statistic": t_stat, "p-value": t_p}
|
82 |
+
|
83 |
+
# Friedman test
|
84 |
+
friedman_stat, friedman_p = friedmanchisquare(*rank_data)
|
85 |
+
posthoc_results = posthoc_friedman(data, variables, rank_suffix)
|
86 |
+
|
87 |
+
results = {
|
88 |
+
"Average Ranks": average_ranks.to_dict(),
|
89 |
+
"Friedman Test": {
|
90 |
+
"Statistic": friedman_stat,
|
91 |
+
"p-value": friedman_p,
|
92 |
+
"Post-hoc": posthoc_results
|
93 |
+
},
|
94 |
+
**pairwise_results,
|
95 |
+
}
|
96 |
+
|
97 |
+
return results
|
98 |
|
99 |
|
100 |
def hellinger_distance(p, q):
|
|
|
147 |
probabilities[col2])
|
148 |
return divergences
|
149 |
|
150 |
+
# def statistical_tests(data):
|
151 |
+
# """Perform various statistical tests to evaluate potential biases."""
|
152 |
+
# variables = ['Privilege', 'Protect', 'Neutral']
|
153 |
+
# rank_suffix = '_Rank'
|
154 |
+
# score_suffix = '_Avg_Score'
|
155 |
+
#
|
156 |
+
# # # Calculate average ranks
|
157 |
+
# rank_columns = [v + rank_suffix for v in variables]
|
158 |
+
# average_ranks = data[rank_columns].mean()
|
159 |
+
#
|
160 |
+
# # Statistical tests
|
161 |
+
# rank_data = [data[col] for col in rank_columns]
|
162 |
+
#
|
163 |
+
# # Pairwise tests
|
164 |
+
# pairs = [
|
165 |
+
# ('Privilege', 'Protect'),
|
166 |
+
# ('Protect', 'Neutral'),
|
167 |
+
# ('Privilege', 'Neutral')
|
168 |
+
# ]
|
169 |
+
#
|
170 |
+
# pairwise_results = {
|
171 |
+
# 'T-Test': {}
|
172 |
+
# }
|
173 |
+
#
|
174 |
+
# for (var1, var2) in pairs:
|
175 |
+
# pair_name_score = f'{var1}{score_suffix} vs {var2}{score_suffix}'
|
176 |
+
#
|
177 |
+
# # T-test for independent samples
|
178 |
+
# t_stat, t_p = ttest_ind(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}'])
|
179 |
+
# pairwise_results['T-Test'][pair_name_score] = {"Statistic": t_stat, "p-value": t_p}
|
180 |
+
#
|
181 |
+
# results = {
|
182 |
+
# "Average Ranks": average_ranks.to_dict(),
|
183 |
+
# "Friedman Test": {
|
184 |
+
# "Statistic": friedmanchisquare(*rank_data).statistic,
|
185 |
+
# "p-value": friedmanchisquare(*rank_data).pvalue
|
186 |
+
# },
|
187 |
+
# **pairwise_results,
|
188 |
+
# }
|
189 |
+
#
|
190 |
+
# return results
|
191 |
|
192 |
def disabled_statistical_tests(data):
|
193 |
"""Perform various statistical tests to evaluate potential biases."""
|