Spaces:
Running
Running
Zekun Wu
commited on
Commit
·
0765d8d
1
Parent(s):
c41e57c
update
Browse files- pages/4_Evaluation_Multiple.py +12 -3
- util/evaluation.py +58 -0
pages/4_Evaluation_Multiple.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
from io import StringIO
|
4 |
-
from util.evaluation import statistical_tests, result_evaluation
|
5 |
|
6 |
def app():
|
7 |
st.title('Result Evaluation')
|
@@ -21,16 +21,25 @@ def app():
|
|
21 |
|
22 |
st.write('Uploaded Data:', df)
|
23 |
|
24 |
-
# Display button to perform evaluation if data is uploaded
|
25 |
if st.button('Evaluate Data'):
|
26 |
with st.spinner('Evaluating data...'):
|
|
|
27 |
test_results = statistical_tests(df, "multiple")
|
28 |
st.write('Test Results:', test_results)
|
29 |
evaluation_results = result_evaluation(test_results, "multiple")
|
30 |
st.write('Evaluation Results:', evaluation_results)
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
# Allow downloading of the evaluation results
|
33 |
-
|
|
|
34 |
st.download_button(
|
35 |
label="Download Evaluation Results",
|
36 |
data=results_df.to_csv().encode('utf-8'),
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
from io import StringIO
|
4 |
+
from util.evaluation import statistical_tests, result_evaluation,calculate_correlations,calculate_divergences
|
5 |
|
6 |
def app():
|
7 |
st.title('Result Evaluation')
|
|
|
21 |
|
22 |
st.write('Uploaded Data:', df)
|
23 |
|
|
|
24 |
if st.button('Evaluate Data'):
|
25 |
with st.spinner('Evaluating data...'):
|
26 |
+
# Existing statistical tests
|
27 |
test_results = statistical_tests(df, "multiple")
|
28 |
st.write('Test Results:', test_results)
|
29 |
evaluation_results = result_evaluation(test_results, "multiple")
|
30 |
st.write('Evaluation Results:', evaluation_results)
|
31 |
|
32 |
+
# New correlation calculations
|
33 |
+
correlation_results = calculate_correlations(df)
|
34 |
+
st.write('Correlation Results:', correlation_results)
|
35 |
+
|
36 |
+
# New divergence calculations
|
37 |
+
divergence_results = calculate_divergences(df)
|
38 |
+
st.write('Divergence Results:', divergence_results)
|
39 |
+
|
40 |
# Allow downloading of the evaluation results
|
41 |
+
results_combined = {**evaluation_results, **correlation_results, **divergence_results}
|
42 |
+
results_df = pd.DataFrame.from_dict(results_combined, orient='index', columns=['Value'])
|
43 |
st.download_button(
|
44 |
label="Download Evaluation Results",
|
45 |
data=results_df.to_csv().encode('utf-8'),
|
util/evaluation.py
CHANGED
@@ -3,6 +3,64 @@ import numpy as np
|
|
3 |
from scipy.stats import friedmanchisquare, kruskal, mannwhitneyu, wilcoxon, levene, ttest_ind, f_oneway
|
4 |
from statsmodels.stats.multicomp import MultiComparison
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def statistical_tests(data, test_type='multiple'):
|
7 |
if test_type == 'multiple':
|
8 |
variables = ['Privilege', 'Protect', 'Neutral']
|
|
|
3 |
from scipy.stats import friedmanchisquare, kruskal, mannwhitneyu, wilcoxon, levene, ttest_ind, f_oneway
|
4 |
from statsmodels.stats.multicomp import MultiComparison
|
5 |
|
6 |
+
import pandas as pd
|
7 |
+
import numpy as np
|
8 |
+
from scipy.stats import spearmanr, pearsonr, kendalltau, entropy
|
9 |
+
from scipy.spatial.distance import jensenshannon
|
10 |
+
|
11 |
+
|
12 |
+
def hellinger_distance(p, q):
|
13 |
+
"""Calculate the Hellinger distance between two probability distributions."""
|
14 |
+
return np.sqrt(0.5 * np.sum((np.sqrt(p) - np.sqrt(q)) ** 2))
|
15 |
+
|
16 |
+
|
17 |
+
def calculate_correlations(df):
|
18 |
+
"""Calculate Spearman, Pearson, and Kendall's Tau correlations for the given ranks in the dataframe."""
|
19 |
+
correlations = {
|
20 |
+
'Spearman': {},
|
21 |
+
'Pearson': {},
|
22 |
+
'Kendall Tau': {}
|
23 |
+
}
|
24 |
+
columns = ['Privilege_Rank', 'Protect_Rank', 'Neutral_Rank']
|
25 |
+
for i in range(len(columns)):
|
26 |
+
for j in range(i + 1, len(columns)):
|
27 |
+
col1, col2 = columns[i], columns[j]
|
28 |
+
correlations['Spearman'][f'{col1} vs {col2}'] = spearmanr(df[col1], df[col2]).correlation
|
29 |
+
correlations['Pearson'][f'{col1} vs {col2}'] = pearsonr(df[col1], df[col2])[0]
|
30 |
+
correlations['Kendall Tau'][f'{col1} vs {col2}'] = kendalltau(df[col1], df[col2]).correlation
|
31 |
+
return correlations
|
32 |
+
|
33 |
+
|
34 |
+
def scores_to_prob(scores):
|
35 |
+
"""Convert scores to probability distributions."""
|
36 |
+
value_counts = scores.value_counts()
|
37 |
+
probabilities = value_counts / value_counts.sum()
|
38 |
+
full_prob = np.zeros(int(scores.max()) + 1)
|
39 |
+
full_prob[value_counts.index.astype(int)] = probabilities
|
40 |
+
return full_prob
|
41 |
+
|
42 |
+
|
43 |
+
def calculate_divergences(df):
|
44 |
+
"""Calculate KL, Jensen-Shannon divergences, and Hellinger distance for the score distributions."""
|
45 |
+
score_columns = ['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score']
|
46 |
+
probabilities = {col: scores_to_prob(df[col]) for col in score_columns}
|
47 |
+
divergences = {
|
48 |
+
'KL Divergence': {},
|
49 |
+
'Jensen-Shannon Divergence': {},
|
50 |
+
'Hellinger Distance': {}
|
51 |
+
}
|
52 |
+
for i in range(len(score_columns)):
|
53 |
+
for j in range(i + 1, len(score_columns)):
|
54 |
+
col1, col2 = score_columns[i], score_columns[j]
|
55 |
+
divergences['KL Divergence'][f'{col1} vs {col2}'] = entropy(probabilities[col1], probabilities[col2])
|
56 |
+
divergences['Jensen-Shannon Divergence'][f'{col1} vs {col2}'] = jensenshannon(probabilities[col1],
|
57 |
+
probabilities[col2])
|
58 |
+
divergences['Hellinger Distance'][f'{col1} vs {col2}'] = hellinger_distance(probabilities[col1],
|
59 |
+
probabilities[col2])
|
60 |
+
return divergences
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
def statistical_tests(data, test_type='multiple'):
|
65 |
if test_type == 'multiple':
|
66 |
variables = ['Privilege', 'Protect', 'Neutral']
|