Spaces:
Sleeping
Sleeping
File size: 12,166 Bytes
8eab031 4b62601 8eab031 4b62601 507d146 4b62601 41592fb 8eab031 4b62601 8eab031 4b62601 8eab031 4109000 ece05b0 3572084 4109000 ece05b0 8eab031 c9e1b5d 8eab031 3572084 8eab031 41592fb 8eab031 4b62601 8eab031 1aabb2d 8cd7f76 1aabb2d 8eab031 1aabb2d 8eab031 4b62601 8eab031 25d3760 8eab031 4b62601 8eab031 386b493 4b62601 8eab031 386b493 8eab031 41592fb ece05b0 41592fb ece05b0 41592fb 5835025 41592fb ece05b0 41592fb ece05b0 41592fb ece05b0 41592fb 4b62601 8eab031 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
# Import necessary libraries
library(shiny)
library(caret)
library(readr)
library(catboost)
library(ggplot2)
library(gridExtra)
source("calculate_shap.R")
source("plot_shap.R")
# Load the pre-trained model
model <- readRDS("goat_behavior_model_caret.rds")
# Define UI for application
ui <- fluidPage(
# App title ----
titlePanel("Detecting Goat Behaviors"),
# Sidebar layout with input and output definitions ----
sidebarLayout(
# Sidebar panel for inputs ----
sidebarPanel(
# Input: Select a file ----
fileInput("file1", "Choose TSV File",
accept = c(
"text/tsv",
"text/tab-separated-values,text/plain",
".tsv")
)
),
# Main panel for displaying outputs ----
mainPanel(
# Output: Tabset with data, confusion matrix, and download button
tabsetPanel(
id = "dataset",
tabPanel("About",
HTML("
<h5> The following model was part of the the research article: </h5>
<h4>Developing an Interpretable Machine Learning Model for the Detection of Mimosa Grazing in Goats</h4>
<p><p> <h5> You can test the app using an example dataset available <a href='https://github.com/harpomaxx/goat-behavior-model/blob/881ed7251a58a55b05d5eb3a3bc40225ba6694cb/data/split/dataset_a.tsv' > here </a></h5>
<p><p> <h5> A dataset is already preloaded in the app for demostration purposes </a></h5>
<em>In the last years, several machine learning approaches for detecting animal behaviors have been proposed.
However, despite their successful application, their complexity and lack of explainability have difficulty in their
application to real-world scenarios. The article presents a machine-learning model for differentiating between grazing mimosa and other activities
(resting, walking, and grazing ) in goats using sensor data. Boruta, an algorithm for selecting the most relevant features, and SHAP,
a technique for interpreting the decision of a machine learning model are two fundamental components of the methodology used for creating the model.
The resulting model, a gradient boost algorithm with 15 selected features proved to be extremely accurate in detecting Grazing activities.
The study demonstrates the fundamental role of model explainability in identifying model weaknesses and errors, thereby creating a path for future
improvements. In addition, the simplicity of the resulting model not only reduces computational complexity and processing time but also enhances
interpretability and facilitates the deployment of real-life scenarios.</em>
<p>
<p>This application allows users to test the pre-trained machine learning model that predicts goat behavior based on input sensor data.
The input data should be a tab-separated value (.tsv) file containing specific sensor data related to the goat's activity.
<p>The application then generates predictions, provides a confusion matrix result, and offers the option to download the predictions. In addition you can explore the decisions of the model via SHAP analysis.
<p>The key features expected in the dataset are:
<table>
<thead>
<tr>
<th>No</th>
<th>Feature</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Steps</td>
<td>Number of steps</td>
</tr>
<tr>
<td>2</td>
<td>HeadDown</td>
<td>% time with head down</td>
</tr>
<tr>
<td>3</td>
<td>Standing</td>
<td>% time Standing</td>
</tr>
<tr>
<td>4</td>
<td>Active</td>
<td>% time Active</td>
</tr>
<tr>
<td>5</td>
<td>MeanXY</td>
<td>Arithmetic mean between X and Y positions</td>
</tr>
<tr>
<td>6</td>
<td>Distance</td>
<td>Distance in meters</td>
</tr>
<tr>
<td>7</td>
<td>prev_steps1</td>
<td>Number of steps one step backward</td>
</tr>
<tr>
<td>8</td>
<td>X_Act</td>
<td>X position actuator</td>
</tr>
<tr>
<td>9</td>
<td>prev_Active1</td>
<td>% time Active one step backward</td>
</tr>
<tr>
<td>10</td>
<td>prev_Standing1</td>
<td>% time Standing one step backward</td>
</tr>
<tr>
<td>11</td>
<td>DFA123</td>
<td>Accumulative Euclidean distance from actual position to three positions forward</td>
</tr>
<tr>
<td>12</td>
<td>prev_headdown1</td>
<td>% time with head down one step backward</td>
</tr>
<tr>
<td>13</td>
<td>Lying</td>
<td>% time Lying</td>
</tr>
<tr>
<td>14</td>
<td>Y_Act</td>
<td>Y position actuator</td>
</tr>
<tr>
<td>15</td>
<td>DBA123</td>
<td>Accumulative Euclidean distance from actual position to three positions backward</td>
</tr>
</tbody>
</table>
<p><p> <h5> Experiments, datasets and source code and more <a href='https://github.com/harpomaxx/goat-behavior/'> here<a/> </h5>"
)
),
tabPanel("Results",
tableOutput("contents"),
verbatimTextOutput("confusionMatText"),
plotOutput("confusionMatPlot"),
downloadButton("downloadData", "Download Predictions")),
tabPanel("SHAP Summary",
plotOutput("SHAPSummary")),
tabPanel("SHAP Summary per class",
plotOutput("SHAPSummaryperclass")),
tabPanel("SHAP Dependency",
plotOutput("SHAPDependency"))
)
)
)
)
# Define server logic
server <- function(input, output) {
# For the predictions dataset
# Path to the default file
default_file_path <- "https://raw.githubusercontent.com/harpomaxx/goat-behavior-model/main/data/split/dataset_b.tsv"
predictions <- reactive({
# Use default file if no file is uploaded
file_path <- if (is.null(input$file1)) {
default_file_path
} else {
input$file1$datapath
}
dataset <- readr::read_delim(file_path, delim='\t')
predict(model, dataset)
})
# For the table
output$contents <- renderTable({
# a file, it will be a data frame with 'name', 'size', 'type', and 'datapath' variables.
# Use default file if no file is uploaded
file_path <- if (is.null(input$file1)) {
default_file_path
} else {
input$file1$datapath
}
dataset <- readr::read_delim(file_path, delim='\t')
head(dataset, n = 5)
})
# Download function for predictions
output$downloadData <- downloadHandler(
filename = function() {
paste("predictions-", Sys.Date(), ".csv", sep="")
},
content = function(file) {
write.csv(data.frame(Index = 1:length(predictions()), Prediction = predictions()), file, row.names = FALSE)
}
)
# Confusion Matrix
output$confusionMatText <- renderPrint({
file_path <- if (is.null(input$file1)) {
default_file_path
} else {
input$file1$datapath
}
dataset <- readr::read_delim(file_path,delim='\t',progress = FALSE)
predictions <- predict(model, dataset)
cm<-caret::confusionMatrix(reference=as.factor(dataset$Activity),predictions,mode="everything")
cm$overall
})
output$confusionMatPlot <- renderPlot({
file_path <- if (is.null(input$file1)) {
default_file_path
} else {
input$file1$datapath
}
dataset <- readr::read_delim(file_path,delim='\t')
predictions <- predict(model, dataset)
cm<-caret::confusionMatrix(reference=as.factor(dataset$Activity),predictions,mode="everything")
# Extract table data from confusion matrix
confusionMatrixTable <- as.table(cm$table)
# Plot the confusion matrix
ggplot(as.data.frame(confusionMatrixTable), aes(x=Reference, y=Prediction)) +
geom_tile(aes(fill = log(Freq)), colour = "white") +
geom_text(aes(label = sprintf("%1.0f", Freq)), vjust = 1) +
scale_fill_gradient(low = "white", high = "steelblue") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
})
output$SHAPSummary <- renderPlot({
file_path <- if (is.null(input$file1)) {
default_file_path
} else {
input$file1$datapath
}
dataset <- readr::read_delim(file_path,delim='\t')
predictions <- predict(model, dataset)
selected_variables <-
readr::read_delim(
"selected_features.tsv",
col_types = cols(),
delim = '\t'
)
new_dataset <-
dataset %>% select(selected_variables$variable, Anim, Activity)
new_dataset <- cbind(new_dataset, predictions)
shap_values <- calculate_shap(new_dataset, model, nsim = 30)
pall<-shap_summary_plot(shap_values %>% as.data.frame())
pall+xlim(0,0.35)
})
output$SHAPSummaryperclass <- renderPlot({
file_path <- if (is.null(input$file1)) {
default_file_path
} else {
input$file1$datapath
}
dataset <- readr::read_delim(file_path,delim='\t')
predictions <- predict(model, dataset)
selected_variables <-
readr::read_delim(
"selected_features.tsv",
col_types = cols(),
delim = '\t'
)
new_dataset <-
dataset %>% select(selected_variables$variable, Anim, Activity)
new_dataset <- cbind(new_dataset, predictions)
shap_values <- calculate_shap(new_dataset, model, nsim = 30)
pW<-shap_summary_plot_perclass(shap_values, class= "W",color="#C77CFF")+xlab("Activity W")+xlim(0,0.25)
pGM<-shap_summary_plot_perclass(shap_values, class= "GM",color="#7CAE00")+xlab("Activity GM")+xlim(0,0.25)
pG<-shap_summary_plot_perclass(shap_values, class= "G",color="#F8766D")+xlab("Activity G")+xlim(0,0.25)
pR<-shap_summary_plot_perclass(shap_values, class= "R",color="#00BFC4")+xlab("Activity R")+xlim(0,0.25)
grid.arrange(pW,pR,pG,pGM)
})
output$SHAPDependency <- renderPlot({
file_path <- if (is.null(input$file1)) {
default_file_path
} else {
input$file1$datapath
}
dataset <- readr::read_delim(file_path,delim='\t')
predictions <- predict(model, dataset)
selected_variables <-
readr::read_delim(
"selected_features.tsv",
col_types = cols(),
delim = '\t'
)
new_dataset <-
dataset %>% select(selected_variables$variable, Anim, Activity)
new_dataset <- cbind(new_dataset, predictions)
shap_values <- calculate_shap(new_dataset, model, nsim = 30)
li<-list()
li[[1]]<-dependency_plot("Steps",dataset = new_dataset,shap=shap_values)
#li[[2]]<-dependency_plot("prev_steps1",dataset = new_dataset,shap=shap_values)
li[[2]]<-dependency_plot("%HeadDown",dataset = new_dataset,shap=shap_values)
#li[[4]]<-dependency_plot("prev_headdown1",dataset = new_dataset,shap=shap_values)
li[[3]]<-dependency_plot("Active",dataset = new_dataset,shap=shap_values)
#li[[6]]<-dependency_plot("prev_Active1",dataset = new_dataset,shap=shap_values)
li[[4]]<-dependency_plot("Standing",dataset = new_dataset,shap=shap_values)
#li[[8]]<-dependency_plot("prev_Standing1",dataset = new_dataset,shap=shap_values)
#li[[9]]<-dependency_plot("X_Act",dataset = new_dataset, shap=shap_values)
#li[[10]]<-dependency_plot("Y_Act",dataset = new_dataset, shap=shap_values)
#li[[11]]<-dependency_plot("DBA123",dataset = new_dataset, shap=shap_values)
#li[[12]]<-dependency_plot("DFA123",dataset = new_dataset, shap=shap_values)
do.call(grid.arrange, c(li, ncol = 1))
})
}
# Create a Shiny app object
shinyApp(ui = ui, server = server)
|