Spaces:
Sleeping
Sleeping
Update app.R
Browse files
app.R
CHANGED
@@ -43,10 +43,10 @@ ui <- fluidPage(
|
|
43 |
tabPanel("About",
|
44 |
HTML("
|
45 |
<h5> The following model was part of the the research article: </h5>
|
|
|
46 |
|
47 |
<p><p> <h5> You can test the app using an example dataset available <a href='https://github.com/harpomaxx/goat-behavior-model/blob/881ed7251a58a55b05d5eb3a3bc40225ba6694cb/data/split/dataset_a.tsv' > here </a></h5>
|
48 |
-
|
49 |
-
<h4>Developing an Interpretable Machine Learning Model for the Detection of Mimosa Grazing in Goats</h4>
|
50 |
|
51 |
<em>In the last years, several machine learning approaches for detecting animal behaviors have been proposed.
|
52 |
However, despite their successful application, their complexity and lack of explainability have difficulty in their
|
@@ -263,11 +263,13 @@ server <- function(input, output) {
|
|
263 |
|
264 |
output$SHAPSummary <- renderPlot({
|
265 |
|
266 |
-
if (is.null(input$file1))
|
267 |
-
|
|
|
|
|
|
|
268 |
|
269 |
-
|
270 |
-
dataset <- readr::read_delim(inFile$datapath,delim='\t')
|
271 |
predictions <- predict(model, dataset)
|
272 |
selected_variables <-
|
273 |
readr::read_delim(
|
@@ -286,11 +288,13 @@ server <- function(input, output) {
|
|
286 |
|
287 |
output$SHAPSummaryperclass <- renderPlot({
|
288 |
|
289 |
-
if (is.null(input$file1))
|
290 |
-
|
|
|
|
|
|
|
291 |
|
292 |
-
|
293 |
-
dataset <- readr::read_delim(inFile$datapath,delim='\t')
|
294 |
predictions <- predict(model, dataset)
|
295 |
selected_variables <-
|
296 |
readr::read_delim(
|
@@ -316,11 +320,12 @@ server <- function(input, output) {
|
|
316 |
})
|
317 |
output$SHAPDependency <- renderPlot({
|
318 |
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
|
|
324 |
predictions <- predict(model, dataset)
|
325 |
selected_variables <-
|
326 |
readr::read_delim(
|
|
|
43 |
tabPanel("About",
|
44 |
HTML("
|
45 |
<h5> The following model was part of the the research article: </h5>
|
46 |
+
<h4>Developing an Interpretable Machine Learning Model for the Detection of Mimosa Grazing in Goats</h4>
|
47 |
|
48 |
<p><p> <h5> You can test the app using an example dataset available <a href='https://github.com/harpomaxx/goat-behavior-model/blob/881ed7251a58a55b05d5eb3a3bc40225ba6694cb/data/split/dataset_a.tsv' > here </a></h5>
|
49 |
+
<p><p> <h5> A dataset is already preloaded in the app for demostration purposes </a></h5>
|
|
|
50 |
|
51 |
<em>In the last years, several machine learning approaches for detecting animal behaviors have been proposed.
|
52 |
However, despite their successful application, their complexity and lack of explainability have difficulty in their
|
|
|
263 |
|
264 |
output$SHAPSummary <- renderPlot({
|
265 |
|
266 |
+
file_path <- if (is.null(input$file1)) {
|
267 |
+
default_file_path
|
268 |
+
} else {
|
269 |
+
input$file1$datapath
|
270 |
+
}
|
271 |
|
272 |
+
dataset <- readr::read_delim(file_path,delim='\t')
|
|
|
273 |
predictions <- predict(model, dataset)
|
274 |
selected_variables <-
|
275 |
readr::read_delim(
|
|
|
288 |
|
289 |
output$SHAPSummaryperclass <- renderPlot({
|
290 |
|
291 |
+
file_path <- if (is.null(input$file1)) {
|
292 |
+
default_file_path
|
293 |
+
} else {
|
294 |
+
input$file1$datapath
|
295 |
+
}
|
296 |
|
297 |
+
dataset <- readr::read_delim(file_path,delim='\t')
|
|
|
298 |
predictions <- predict(model, dataset)
|
299 |
selected_variables <-
|
300 |
readr::read_delim(
|
|
|
320 |
})
|
321 |
output$SHAPDependency <- renderPlot({
|
322 |
|
323 |
+
file_path <- if (is.null(input$file1)) {
|
324 |
+
default_file_path
|
325 |
+
} else {
|
326 |
+
input$file1$datapath
|
327 |
+
}
|
328 |
+
dataset <- readr::read_delim(file_path,delim='\t')
|
329 |
predictions <- predict(model, dataset)
|
330 |
selected_variables <-
|
331 |
readr::read_delim(
|