Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.R +221 -37
- goat_behavior_model_caret.rds +0 -0
app.R
CHANGED
@@ -1,51 +1,235 @@
|
|
|
|
1 |
library(shiny)
|
2 |
-
library(
|
3 |
-
library(
|
|
|
4 |
library(ggplot2)
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
df_num <- df |> select(where(is.numeric), -Year)
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
),
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
)
|
25 |
)
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
})
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
}
|
50 |
|
51 |
-
|
|
|
|
1 |
+
# Import necessary libraries
|
2 |
library(shiny)
|
3 |
+
library(caret)
|
4 |
+
library(readr)
|
5 |
+
library(catboost)
|
6 |
library(ggplot2)
|
7 |
|
8 |
+
# Load the pre-trained model
|
9 |
+
model <- readRDS("goat_behavior_model_caret.rds")
|
|
|
10 |
|
11 |
+
# Define UI for application
|
12 |
+
ui <- fluidPage(
|
13 |
+
|
14 |
+
# App title ----
|
15 |
+
titlePanel("Detecting Goat Behaviors"),
|
16 |
+
|
17 |
+
# Sidebar layout with input and output definitions ----
|
18 |
+
sidebarLayout(
|
19 |
+
|
20 |
+
# Sidebar panel for inputs ----
|
21 |
+
sidebarPanel(
|
22 |
+
|
23 |
+
# Input: Select a file ----
|
24 |
+
fileInput("file1", "Choose TSV File",
|
25 |
+
accept = c(
|
26 |
+
"text/tsv",
|
27 |
+
"text/tab-separated-values,text/plain",
|
28 |
+
".tsv")
|
29 |
+
)
|
30 |
+
|
31 |
),
|
32 |
+
|
33 |
+
# Main panel for displaying outputs ----
|
34 |
+
mainPanel(
|
35 |
+
|
36 |
+
# Output: Tabset with data, confusion matrix, and download button
|
37 |
+
tabsetPanel(
|
38 |
+
id = "dataset",
|
39 |
+
tabPanel("About",
|
40 |
+
HTML("
|
41 |
+
<h5> The following model was part of the the research article:
|
42 |
+
<h4>Developing an Interpretable Machine Learning Model for the Detection of Mimosa Grazing in Goats</h4>
|
43 |
+
|
44 |
+
<em>In the last years, several machine learning approaches for detecting animal behaviors have been proposed.
|
45 |
+
However, despite their successful application, their complexity and lack of explainability have difficulty in their
|
46 |
+
application to real-world scenarios. The article presents a machine-learning model for differentiating between grazing mimosa and other activities
|
47 |
+
(resting, walking, and grazing ) in goats using sensor data. Boruta, an algorithm for selecting the most relevant features, and SHAP,
|
48 |
+
a technique for interpreting the decision of a machine learning model are two fundamental components of the methodology used for creating the model.
|
49 |
+
The resulting model, a gradient boost algorithm with 15 selected features proved to be extremely accurate in detecting Grazing activities.
|
50 |
+
The study demonstrates the fundamental role of model explainability in identifying model weaknesses and errors, thereby creating a path for future
|
51 |
+
improvements. In addition, the simplicity of the resulting model not only reduces computational complexity and processing time but also enhances
|
52 |
+
interpretability and facilitates the deployment of real-life scenarios.</em>
|
53 |
+
<p>
|
54 |
+
<p>This application allows users to test the pre-trained machine learning model that predicts goat behavior based on input sensor data.
|
55 |
+
The input data should be a tab-separated value (.tsv) file containing specific sensor data related to the goat's activity.
|
56 |
+
<p>The application then generates predictions, provides a confusion matrix result, and offers the option to download the predictions.
|
57 |
+
<p>The key features expected in the dataset are:
|
58 |
+
<table>
|
59 |
+
<thead>
|
60 |
+
<tr>
|
61 |
+
<th>No</th>
|
62 |
+
<th>Feature</th>
|
63 |
+
<th>Definition</th>
|
64 |
+
</tr>
|
65 |
+
</thead>
|
66 |
+
<tbody>
|
67 |
+
<tr>
|
68 |
+
<td>1</td>
|
69 |
+
<td>Steps</td>
|
70 |
+
<td>Number of steps</td>
|
71 |
+
</tr>
|
72 |
+
<tr>
|
73 |
+
<td>2</td>
|
74 |
+
<td>HeadDown</td>
|
75 |
+
<td>% time with head down</td>
|
76 |
+
</tr>
|
77 |
+
<tr>
|
78 |
+
<td>3</td>
|
79 |
+
<td>Standing</td>
|
80 |
+
<td>% time Standing</td>
|
81 |
+
</tr>
|
82 |
+
<tr>
|
83 |
+
<td>4</td>
|
84 |
+
<td>Active</td>
|
85 |
+
<td>% time Active</td>
|
86 |
+
</tr>
|
87 |
+
<tr>
|
88 |
+
<td>5</td>
|
89 |
+
<td>MeanXY</td>
|
90 |
+
<td>Arithmetic mean between X and Y positions</td>
|
91 |
+
</tr>
|
92 |
+
<tr>
|
93 |
+
<td>6</td>
|
94 |
+
<td>Distance</td>
|
95 |
+
<td>Distance in meters</td>
|
96 |
+
</tr>
|
97 |
+
<tr>
|
98 |
+
<td>7</td>
|
99 |
+
<td>prev_steps1</td>
|
100 |
+
<td>Number of steps one step backward</td>
|
101 |
+
</tr>
|
102 |
+
<tr>
|
103 |
+
<td>8</td>
|
104 |
+
<td>X_Act</td>
|
105 |
+
<td>X position actuator</td>
|
106 |
+
</tr>
|
107 |
+
<tr>
|
108 |
+
<td>9</td>
|
109 |
+
<td>prev_Active1</td>
|
110 |
+
<td>% time Active one step backward</td>
|
111 |
+
</tr>
|
112 |
+
<tr>
|
113 |
+
<td>10</td>
|
114 |
+
<td>prev_Standing1</td>
|
115 |
+
<td>% time Standing one step backward</td>
|
116 |
+
</tr>
|
117 |
+
<tr>
|
118 |
+
<td>11</td>
|
119 |
+
<td>DFA123</td>
|
120 |
+
<td>Accumulative Euclidean distance from actual position to three positions forward</td>
|
121 |
+
</tr>
|
122 |
+
<tr>
|
123 |
+
<td>12</td>
|
124 |
+
<td>prev_headdown1</td>
|
125 |
+
<td>% time with head down one step backward</td>
|
126 |
+
</tr>
|
127 |
+
<tr>
|
128 |
+
<td>13</td>
|
129 |
+
<td>Lying</td>
|
130 |
+
<td>% time Lying</td>
|
131 |
+
</tr>
|
132 |
+
<tr>
|
133 |
+
<td>14</td>
|
134 |
+
<td>Y_Act</td>
|
135 |
+
<td>Y position actuator</td>
|
136 |
+
</tr>
|
137 |
+
<tr>
|
138 |
+
<td>15</td>
|
139 |
+
<td>DBA123</td>
|
140 |
+
<td>Accumulative Euclidean distance from actual position to three positions backward</td>
|
141 |
+
</tr>
|
142 |
+
</tbody>
|
143 |
+
</table>
|
144 |
+
|
145 |
+
<p><p> <h5> Experiments, source code and more <a href=https://github.com/harpomaxx/goat-behavior/> here<a/> </h5>")
|
146 |
+
),
|
147 |
+
|
148 |
+
tabPanel("Results",
|
149 |
+
tableOutput("contents"),
|
150 |
+
verbatimTextOutput("confusionMatText"),
|
151 |
+
plotOutput("confusionMatPlot"),
|
152 |
+
downloadButton("downloadData", "Download Predictions"))
|
153 |
+
)
|
154 |
+
)
|
155 |
)
|
156 |
)
|
157 |
|
158 |
+
# Define server logic
|
159 |
+
server <- function(input, output) {
|
160 |
+
|
161 |
+
# For the predictions dataset
|
162 |
+
predictions <- reactive({
|
163 |
+
|
164 |
+
if (is.null(input$file1))
|
165 |
+
return(NULL)
|
166 |
+
|
167 |
+
inFile <- input$file1
|
168 |
+
dataset <- readr::read_delim(inFile$datapath,delim='\t')
|
169 |
+
predict(model, dataset)
|
170 |
+
|
171 |
})
|
172 |
|
173 |
+
# For the table
|
174 |
+
output$contents <- renderTable({
|
175 |
+
|
176 |
+
# input$file1 will be NULL initially. After the user selects
|
177 |
+
# a file, it will be a data frame with 'name', 'size', 'type', and 'datapath' variables.
|
178 |
+
inFile <- input$file1
|
179 |
+
|
180 |
+
if (is.null(inFile))
|
181 |
+
return(NULL)
|
182 |
+
|
183 |
+
# Read the file from the input$file1 path and return it
|
184 |
+
dataset <- readr::read_delim(inFile$datapath,delim='\t')
|
185 |
+
head(dataset, n = 5)
|
186 |
+
})
|
187 |
+
|
188 |
+
# Download function for predictions
|
189 |
+
output$downloadData <- downloadHandler(
|
190 |
+
filename = function() {
|
191 |
+
paste("predictions-", Sys.Date(), ".csv", sep="")
|
192 |
+
},
|
193 |
+
content = function(file) {
|
194 |
+
write.csv(data.frame(Index = 1:length(predictions()), Prediction = predictions()), file, row.names = FALSE)
|
195 |
}
|
196 |
+
)
|
197 |
+
|
198 |
+
# Confusion Matrix
|
199 |
+
output$confusionMatText <- renderPrint({
|
200 |
+
|
201 |
+
if (is.null(input$file1))
|
202 |
+
return(NULL)
|
203 |
|
204 |
+
inFile <- input$file1
|
205 |
+
dataset <- readr::read_delim(inFile$datapath,delim='\t',progress = FALSE)
|
206 |
+
predictions <- predict(model, dataset)
|
207 |
+
cm<-caret::confusionMatrix(reference=as.factor(dataset$Activity),predictions,mode="everything")
|
208 |
+
cm$overall
|
209 |
+
})
|
210 |
+
|
211 |
+
output$confusionMatPlot <- renderPlot({
|
212 |
+
|
213 |
+
if (is.null(input$file1))
|
214 |
+
return(NULL)
|
215 |
+
|
216 |
+
inFile <- input$file1
|
217 |
+
dataset <- readr::read_delim(inFile$datapath,delim='\t')
|
218 |
+
predictions <- predict(model, dataset)
|
219 |
+
cm<-caret::confusionMatrix(reference=as.factor(dataset$Activity),predictions,mode="everything")
|
220 |
+
|
221 |
+
# Extract table data from confusion matrix
|
222 |
+
confusionMatrixTable <- as.table(cm$table)
|
223 |
+
|
224 |
+
# Plot the confusion matrix
|
225 |
+
ggplot(as.data.frame(confusionMatrixTable), aes(x=Reference, y=Prediction)) +
|
226 |
+
geom_tile(aes(fill = log(Freq)), colour = "white") +
|
227 |
+
geom_text(aes(label = sprintf("%1.0f", Freq)), vjust = 1) +
|
228 |
+
scale_fill_gradient(low = "white", high = "steelblue") +
|
229 |
+
theme_minimal() +
|
230 |
+
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
|
231 |
+
})
|
232 |
}
|
233 |
|
234 |
+
# Create a Shiny app object
|
235 |
+
shinyApp(ui = ui, server = server)
|
goat_behavior_model_caret.rds
ADDED
Binary file (537 kB). View file
|
|