File size: 25,852 Bytes
cf3d1b1 fbd70bc cf3d1b1 d82cd6f cf3d1b1 d82cd6f cf3d1b1 d82cd6f cf3d1b1 2b66ced 06bb18a d82cd6f 2b66ced cf3d1b1 2b66ced fbd70bc 2a644e6 fbd70bc 2b66ced fbd70bc 2b66ced fbd70bc cf3d1b1 d82cd6f cf3d1b1 2b66ced cf3d1b1 2b66ced d82cd6f 2b66ced 2a644e6 2b66ced cf3d1b1 fbd70bc cf3d1b1 2b66ced cf3d1b1 d82cd6f 2b66ced fbd70bc 2b66ced d82cd6f 2b66ced d82cd6f 2b66ced 2a644e6 2b66ced cf3d1b1 d82cd6f cf3d1b1 d82cd6f cf3d1b1 d82cd6f cf3d1b1 2b66ced d82cd6f cf3d1b1 d82cd6f cf3d1b1 d82cd6f cf3d1b1 d82cd6f cf3d1b1 d82cd6f cf3d1b1 d82cd6f cf3d1b1 d82cd6f cf3d1b1 2b66ced 2a644e6 d82cd6f 2a644e6 d82cd6f 2b66ced d82cd6f 2b66ced d82cd6f 2b66ced 06bb18a 2b66ced 2a644e6 2b66ced d82cd6f 2b66ced 06bb18a d82cd6f 06bb18a d82cd6f cf3d1b1 2b66ced d82cd6f 2b66ced cf3d1b1 d82cd6f cf3d1b1 d82cd6f cf3d1b1 d82cd6f cf3d1b1 d82cd6f cf3d1b1 d82cd6f cf3d1b1 d82cd6f cf3d1b1 d82cd6f cf3d1b1 2b66ced cf3d1b1 2b66ced cf3d1b1 2b66ced cf3d1b1 2b66ced d82cd6f 2b66ced d82cd6f cf3d1b1 2a644e6 cf3d1b1 d82cd6f cf3d1b1 d82cd6f cf3d1b1 2b66ced cf3d1b1 65c6c48 2b66ced 2a644e6 2b66ced d82cd6f 2b66ced d82cd6f 2b66ced 65c6c48 2a644e6 2b66ced d82cd6f 65c6c48 2a644e6 2b66ced d82cd6f 2b66ced d82cd6f 2b66ced 65c6c48 2a644e6 2b66ced 65c6c48 2a644e6 2b66ced d82cd6f 2b66ced 65c6c48 2a644e6 2b66ced d82cd6f 2b66ced 06bb18a 65c6c48 06bb18a d82cd6f 06bb18a 2b66ced 65c6c48 2b66ced d82cd6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
import json
import os
import gradio as gr
import spaces
from contents import (
citation,
description,
examples,
how_it_works_intro,
cti_explanation,
cci_explanation,
how_to_use,
example_explanation,
subtitle,
title,
powered_by,
support,
)
from gradio_highlightedtextbox import HighlightedTextbox
from presets import (
set_chatml_preset,
set_cora_preset,
set_default_preset,
set_mmt_preset,
set_towerinstruct_preset,
set_zephyr_preset,
set_gemma_preset,
set_mistral_instruct_preset,
)
from style import custom_css
from utils import get_formatted_attribute_context_results
from inseq import list_feature_attribution_methods, list_step_functions
from inseq.commands.attribute_context.attribute_context import (
AttributeContextArgs,
attribute_context_with_model,
)
from inseq.models import HuggingfaceModel
loaded_model: HuggingfaceModel = None
@spaces.GPU()
def pecore(
input_current_text: str,
input_context_text: str,
output_current_text: str,
output_context_text: str,
model_name_or_path: str,
attribution_method: str,
attributed_fn: str | None,
context_sensitivity_metric: str,
context_sensitivity_std_threshold: float,
context_sensitivity_topk: int,
attribution_std_threshold: float,
attribution_topk: int,
input_template: str,
output_template: str,
contextless_input_template: str,
contextless_output_template: str,
special_tokens_to_keep: str | list[str] | None,
decoder_input_output_separator: str,
model_kwargs: str,
tokenizer_kwargs: str,
generation_kwargs: str,
attribution_kwargs: str,
):
global loaded_model
if "{context}" in output_template and not output_context_text:
raise gr.Error(
"Parameter 'Generation context' must be set when including {context} in the output template."
)
if loaded_model is None or model_name_or_path != loaded_model.model_name:
gr.Info("Loading model...")
loaded_model = HuggingfaceModel.load(
model_name_or_path,
attribution_method,
model_kwargs=json.loads(model_kwargs),
tokenizer_kwargs=json.loads(tokenizer_kwargs),
)
kwargs = {}
if context_sensitivity_topk > 0:
kwargs["context_sensitivity_topk"] = context_sensitivity_topk
if attribution_topk > 0:
kwargs["attribution_topk"] = attribution_topk
if input_context_text:
kwargs["input_context_text"] = input_context_text
if output_context_text:
kwargs["output_context_text"] = output_context_text
if output_current_text:
kwargs["output_current_text"] = output_current_text
if decoder_input_output_separator:
kwargs["decoder_input_output_separator"] = decoder_input_output_separator
pecore_args = AttributeContextArgs(
show_intermediate_outputs=False,
save_path=os.path.join(os.path.dirname(__file__), "outputs/output.json"),
add_output_info=True,
viz_path=os.path.join(os.path.dirname(__file__), "outputs/output.html"),
show_viz=False,
model_name_or_path=model_name_or_path,
attribution_method=attribution_method,
attributed_fn=attributed_fn,
attribution_selectors=None,
attribution_aggregators=None,
normalize_attributions=True,
model_kwargs=json.loads(model_kwargs),
tokenizer_kwargs=json.loads(tokenizer_kwargs),
generation_kwargs=json.loads(generation_kwargs),
attribution_kwargs=json.loads(attribution_kwargs),
context_sensitivity_metric=context_sensitivity_metric,
prompt_user_for_contextless_output_next_tokens=False,
special_tokens_to_keep=special_tokens_to_keep,
context_sensitivity_std_threshold=context_sensitivity_std_threshold,
attribution_std_threshold=attribution_std_threshold,
input_current_text=input_current_text,
input_template=input_template,
output_template=output_template,
contextless_input_current_text=contextless_input_template,
contextless_output_current_text=contextless_output_template,
handle_output_context_strategy="pre",
**kwargs,
)
out = attribute_context_with_model(pecore_args, loaded_model)
tuples = get_formatted_attribute_context_results(loaded_model, out.info, out)
if not tuples:
msg = f"Output: {out.output_current}\nWarning: No pairs were found by PECoRe.\nTry adjusting Results Selection parameters to soften selection constraints (e.g. setting Context sensitivity threshold to 0)."
tuples = [(msg, None)]
return [
tuples,
gr.DownloadButton(
label="π Download output",
value=os.path.join(os.path.dirname(__file__), "outputs/output.json"),
visible=True,
),
gr.DownloadButton(
label="π Download HTML",
value=os.path.join(os.path.dirname(__file__), "outputs/output.html"),
visible=True,
)
]
@spaces.GPU()
def preload_model(
model_name_or_path: str,
attribution_method: str,
model_kwargs: str,
tokenizer_kwargs: str,
):
global loaded_model
if loaded_model is None or model_name_or_path != loaded_model.model_name:
gr.Info("Loading model...")
loaded_model = HuggingfaceModel.load(
model_name_or_path,
attribution_method,
model_kwargs=json.loads(model_kwargs),
tokenizer_kwargs=json.loads(tokenizer_kwargs),
)
with gr.Blocks(css=custom_css) as demo:
with gr.Row():
with gr.Column(scale=0.1, min_width=100):
gr.HTML(f'<img src="file/img/pecore_logo_white_contour.png" width=100px />')
with gr.Column(scale=0.8):
gr.Markdown(title)
gr.Markdown(subtitle)
with gr.Column(scale=0.1, min_width=100):
gr.HTML(f'<img src="file/img/pecore_logo_white_contour.png" width=100px />')
gr.Markdown(description)
with gr.Tab("π Demo"):
with gr.Row():
with gr.Column():
input_context_text = gr.Textbox(
label="Input context", lines=3, placeholder="Your input context..."
)
input_current_text = gr.Textbox(
label="Input query", placeholder="Your input query..."
)
attribute_input_button = gr.Button("Run PECoRe", variant="primary")
with gr.Column():
pecore_output_highlights = HighlightedTextbox(
value=[
("This output will contain ", None),
("context sensitive", "Context sensitive"),
(" generated tokens and ", None),
("influential context", "Influential context"),
(" tokens.", None),
],
color_map={
"Context sensitive": "#5fb77d",
"Influential context": "#80ace8",
},
show_legend=True,
label="PECoRe Output",
combine_adjacent=True,
interactive=False,
)
with gr.Row(equal_height=True):
download_output_file_button = gr.DownloadButton(
"π Download output",
visible=False,
)
download_output_html_button = gr.DownloadButton(
"π Download HTML",
visible=False,
value=os.path.join(
os.path.dirname(__file__), "outputs/output.html"
),
)
preset_comment = gr.Markdown(
"<i>The <a href='https://huggingface.co/gsarti/cora_mgen' target='_blank'>CORA Multilingual QA</a> model by <a href='https://openreview.net/forum?id=e8blYRui3j' target='_blank'>Asai et al. (2021)</a> is set as default and can be used with the examples below. Explore other presets in the βοΈ Parameters tab.</i>"
)
attribute_input_examples = gr.Examples(
examples,
inputs=[input_current_text, input_context_text],
outputs=pecore_output_highlights,
examples_per_page=1,
)
with gr.Tab("βοΈ Parameters") as params_tab:
gr.Markdown(
"## β¨ Presets\nSelect a preset to load the selected model and its default parameters (e.g. prompt template, special tokens, etc.) into the fields below.<br>β οΈ **This will overwrite existing parameters. If you intend to use large models that could crash the demo, please clone this Space and allocate appropriate resources for them to run comfortably.**"
)
check_enable_large_models = gr.Checkbox(False, label = "I understand, enable large models presets")
with gr.Row(equal_height=True):
with gr.Column():
default_preset = gr.Button("Default", variant="secondary")
gr.Markdown(
"Default preset using templates without special tokens or parameters.\nCan be used with most decoder-only and encoder-decoder models."
)
with gr.Column():
cora_preset = gr.Button("CORA mQA", variant="secondary")
gr.Markdown(
"Preset for the <a href='https://huggingface.co/gsarti/cora_mgen' target='_blank'>CORA Multilingual QA</a> model.\nUses special templates for inputs."
)
with gr.Column():
zephyr_preset = gr.Button("Zephyr Template", variant="secondary", interactive=False)
gr.Markdown(
"Preset for models using the <a href='https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b' target='_blank'>StableLM 2 Zephyr conversational template</a>.\nUses <code><|system|></code>, <code><|user|></code> and <code><|assistant|></code> special tokens."
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
multilingual_mt_template = gr.Button(
"Multilingual MT", variant="secondary"
)
gr.Markdown(
"Preset for multilingual MT models such as <a href='https://huggingface.co/facebook/nllb-200-distilled-600M' target='_blank'>NLLB</a> and <a href='https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt' target='_blank'>mBART</a> using language tags."
)
with gr.Column(scale=1):
chatml_template = gr.Button("Qwen ChatML", variant="secondary")
gr.Markdown(
"Preset for models using the <a href='https://github.com/MicrosoftDocs/azure-docs/blob/main/articles/ai-services/openai/includes/chat-markup-language.md' target='_blank'>ChatML conversational template</a>.\nUses <code><|im_start|></code>, <code><|im_end|></code> special tokens."
)
with gr.Column(scale=1):
towerinstruct_template = gr.Button(
"Unbabel TowerInstruct", variant="secondary", interactive=False
)
gr.Markdown(
"Preset for models using the <a href='https://huggingface.co/Unbabel/TowerInstruct-7B-v0.1' target='_blank'>Unbabel TowerInstruct</a> conversational template.\nUses <code><|im_start|></code>, <code><|im_end|></code> special tokens."
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
gemma_template = gr.Button(
"Gemma Chat Template", variant="secondary", interactive=False
)
gr.Markdown(
"Preset for <a href='https://huggingface.co/google/gemma-2b-it' target='_blank'>Gemma</a> instruction-tuned models."
)
with gr.Column(scale=1):
mistral_instruct_template = gr.Button(
"Mistral Instruct", variant="secondary", interactive=False
)
gr.Markdown(
"Preset for models using the <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2' target='_blank'>Mistral Instruct template</a>.\nUses <code>[INST]...[/INST]</code> special tokens."
)
gr.Markdown("## βοΈ PECoRe Parameters")
with gr.Row(equal_height=True):
with gr.Column():
model_name_or_path = gr.Textbox(
value="gsarti/cora_mgen",
label="Model",
info="Hugging Face Hub identifier of the model to analyze with PECoRe.",
interactive=True,
)
load_model_button = gr.Button(
"Load model",
variant="secondary",
)
context_sensitivity_metric = gr.Dropdown(
value="kl_divergence",
label="Context sensitivity metric",
info="Metric to use to measure context sensitivity of generated tokens.",
choices=list_step_functions(),
interactive=True,
)
attribution_method = gr.Dropdown(
value="saliency",
label="Attribution method",
info="Attribution method identifier to identify relevant context tokens.",
choices=list_feature_attribution_methods(),
interactive=True,
)
attributed_fn = gr.Dropdown(
value="contrast_prob_diff",
label="Attributed function",
info="Function of model logits to use as target for the attribution method.",
choices=list_step_functions(),
interactive=True,
)
gr.Markdown("#### Results Selection Parameters")
with gr.Row(equal_height=True):
context_sensitivity_std_threshold = gr.Number(
value=0.0,
label="Context sensitivity threshold",
info="Select N to keep context sensitive tokens with scores above N * std. 0 = above mean.",
precision=1,
minimum=0.0,
maximum=5.0,
step=0.5,
interactive=True,
)
context_sensitivity_topk = gr.Number(
value=0,
label="Context sensitivity top-k",
info="Select N to keep top N context sensitive tokens. 0 = keep all.",
interactive=True,
precision=0,
minimum=0,
maximum=10,
)
attribution_std_threshold = gr.Number(
value=1.0,
label="Attribution threshold",
info="Select N to keep attributed tokens with scores above N * std. 0 = above mean.",
precision=1,
minimum=0.0,
maximum=5.0,
step=0.5,
interactive=True,
)
attribution_topk = gr.Number(
value=5,
label="Attribution top-k",
info="Select N to keep top N attributed tokens in the context. 0 = keep all.",
interactive=True,
precision=0,
minimum=0,
maximum=100,
)
gr.Markdown("#### Text Format Parameters")
with gr.Row(equal_height=True):
input_template = gr.Textbox(
value="<Q>:{current} <P>:{context}",
label="Contextual input template",
info="Template to format the input for the model. Use {current} and {context} placeholders for Input Query and Input Context, respectively.",
interactive=True,
)
output_template = gr.Textbox(
value="{current}",
label="Contextual output template",
info="Template to format the output from the model. Use {current} and {context} placeholders for Generation Output and Generation Context, respectively.",
interactive=True,
)
contextless_input_template = gr.Textbox(
value="<Q>:{current}",
label="Contextless input template",
info="Template to format the input query in the non-contextual setting. Use {current} placeholder for Input Query.",
interactive=True,
)
contextless_output_template = gr.Textbox(
value="{current}",
label="Contextless output template",
info="Template to format the output from the model. Use {current} placeholder for Generation Output.",
interactive=True,
)
with gr.Row(equal_height=True):
special_tokens_to_keep = gr.Dropdown(
label="Special tokens to keep",
info="Special tokens to keep in the attribution. If empty, all special tokens are ignored.",
value=None,
multiselect=True,
allow_custom_value=True,
)
decoder_input_output_separator = gr.Textbox(
label="Decoder input/output separator",
info="Separator to use between input and output in the decoder input.",
value="",
interactive=True,
lines=1,
)
gr.Markdown("## βοΈ Generation Parameters")
with gr.Row(equal_height=True):
with gr.Column(scale=0.5):
gr.Markdown(
"The following arguments can be used to control generation parameters and force specific model outputs."
)
with gr.Column(scale=1):
generation_kwargs = gr.Code(
value="{}",
language="json",
label="Generation kwargs (JSON)",
interactive=True,
lines=1,
)
with gr.Row(equal_height=True):
output_current_text = gr.Textbox(
label="Generation output",
info="Specifies an output to force-decoded during generation. If blank, the model will generate freely.",
interactive=True,
)
output_context_text = gr.Textbox(
label="Generation context",
info="If specified, this context is used as starting point for generation. Useful for e.g. chain-of-thought reasoning.",
interactive=True,
)
gr.Markdown("## βοΈ Other Parameters")
with gr.Row(equal_height=True):
with gr.Column():
gr.Markdown(
"The following arguments will be passed to initialize the Hugging Face model and tokenizer, and to the `inseq_model.attribute` method."
)
with gr.Column():
model_kwargs = gr.Code(
value="{}",
language="json",
label="Model kwargs (JSON)",
interactive=True,
lines=1,
min_width=160,
)
with gr.Column():
tokenizer_kwargs = gr.Code(
value="{}",
language="json",
label="Tokenizer kwargs (JSON)",
interactive=True,
lines=1,
)
with gr.Column():
attribution_kwargs = gr.Code(
value='{\n\t"logprob": true\n}',
language="json",
label="Attribution kwargs (JSON)",
interactive=True,
lines=1,
)
with gr.Tab("π How Does It Work?"):
gr.Markdown(how_it_works_intro)
with gr.Row(equal_height=True):
with gr.Column(scale=0.60):
gr.Markdown(cti_explanation)
with gr.Column(scale=0.30):
gr.HTML('<img src="file/img/cti_white_outline.png" width=100% />')
with gr.Row(equal_height=True):
with gr.Column(scale=0.35):
gr.HTML('<img src="file/img/cci_white_outline.png" width=100% />')
with gr.Column(scale=0.65):
gr.Markdown(cci_explanation)
with gr.Tab("π§ Usage Guide"):
gr.Markdown(how_to_use)
gr.HTML('<img src="file/img/pecore_ui_output_example.png" width=100% />')
gr.Markdown(example_explanation)
with gr.Tab("π Citing PECoRe"):
gr.Markdown(citation)
with gr.Row(elem_classes="footer-container"):
gr.Markdown(powered_by)
gr.Markdown(support)
# Main logic
load_model_args = [
model_name_or_path,
attribution_method,
model_kwargs,
tokenizer_kwargs,
]
attribute_input_button.click(
lambda *args: [gr.DownloadButton(visible=False), gr.DownloadButton(visible=False)],
inputs=[],
outputs=[download_output_file_button, download_output_html_button],
).then(
pecore,
inputs=[
input_current_text,
input_context_text,
output_current_text,
output_context_text,
model_name_or_path,
attribution_method,
attributed_fn,
context_sensitivity_metric,
context_sensitivity_std_threshold,
context_sensitivity_topk,
attribution_std_threshold,
attribution_topk,
input_template,
output_template,
contextless_input_template,
contextless_output_template,
special_tokens_to_keep,
decoder_input_output_separator,
model_kwargs,
tokenizer_kwargs,
generation_kwargs,
attribution_kwargs,
],
outputs=[
pecore_output_highlights,
download_output_file_button,
download_output_html_button,
],
)
load_model_event = load_model_button.click(
preload_model,
inputs=load_model_args,
outputs=[],
)
# Preset params
check_enable_large_models.input(
lambda checkbox, *buttons: [gr.Button(interactive=checkbox) for _ in buttons],
inputs=[check_enable_large_models, zephyr_preset, towerinstruct_template, gemma_template, mistral_instruct_template],
outputs=[zephyr_preset, towerinstruct_template, gemma_template, mistral_instruct_template],
)
outputs_to_reset = [
model_name_or_path,
input_template,
output_template,
contextless_input_template,
contextless_output_template,
special_tokens_to_keep,
decoder_input_output_separator,
model_kwargs,
tokenizer_kwargs,
generation_kwargs,
attribution_kwargs,
]
reset_kwargs = {
"fn": set_default_preset,
"inputs": None,
"outputs": outputs_to_reset,
}
# Presets
default_preset.click(**reset_kwargs).success(preload_model, inputs=load_model_args, cancels=load_model_event)
cora_preset.click(**reset_kwargs).then(
set_cora_preset,
outputs=[model_name_or_path, input_template, contextless_input_template],
).success(preload_model, inputs=load_model_args, cancels=load_model_event)
zephyr_preset.click(**reset_kwargs).then(
set_zephyr_preset,
outputs=[
model_name_or_path,
input_template,
contextless_input_template,
decoder_input_output_separator,
special_tokens_to_keep,
],
).success(preload_model, inputs=load_model_args, cancels=load_model_event)
multilingual_mt_template.click(**reset_kwargs).then(
set_mmt_preset,
outputs=[model_name_or_path, input_template, output_template, tokenizer_kwargs],
).success(preload_model, inputs=load_model_args, cancels=load_model_event)
chatml_template.click(**reset_kwargs).then(
set_chatml_preset,
outputs=[
model_name_or_path,
input_template,
contextless_input_template,
decoder_input_output_separator,
special_tokens_to_keep,
],
).success(preload_model, inputs=load_model_args, cancels=load_model_event)
towerinstruct_template.click(**reset_kwargs).then(
set_towerinstruct_preset,
outputs=[
model_name_or_path,
input_template,
contextless_input_template,
decoder_input_output_separator,
special_tokens_to_keep,
],
).success(preload_model, inputs=load_model_args, cancels=load_model_event)
gemma_template.click(**reset_kwargs).then(
set_gemma_preset,
outputs=[
model_name_or_path,
input_template,
contextless_input_template,
decoder_input_output_separator,
special_tokens_to_keep,
],
).success(preload_model, inputs=load_model_args, cancels=load_model_event)
mistral_instruct_template.click(**reset_kwargs).then(
set_mistral_instruct_preset,
outputs=[
model_name_or_path,
input_template,
contextless_input_template,
decoder_input_output_separator,
],
).success(preload_model, inputs=load_model_args, cancels=load_model_event)
demo.launch(allowed_paths=["outputs/", "img/"])
|