File size: 11,134 Bytes
4da2d90
 
 
9632f25
69d6988
4da2d90
 
 
 
 
baaa2b9
f8ce661
9632f25
4da2d90
9632f25
 
4da2d90
e3799c1
 
4da2d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3799c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4da2d90
05f54e2
 
91d3bd5
 
 
 
 
 
 
 
 
9632f25
5f1b905
9632f25
 
91d3bd5
9632f25
 
05f54e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f1b905
91d3bd5
5f1b905
05f54e2
91d3bd5
5f1b905
 
 
91d3bd5
 
 
5f1b905
91d3bd5
5f1b905
91d3bd5
5f1b905
 
 
 
 
 
 
 
91d3bd5
5f1b905
91d3bd5
5f1b905
 
 
 
 
91d3bd5
5f1b905
05f54e2
91d3bd5
5f1b905
 
91d3bd5
 
 
5f1b905
 
 
91d3bd5
 
 
5f1b905
 
91d3bd5
5f1b905
 
 
9632f25
 
 
82a71e3
91d3bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9632f25
4da2d90
e8864dd
91d3bd5
e8864dd
05f54e2
9632f25
05f54e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4da2d90
5f1b905
 
 
 
 
 
 
 
 
 
 
9632f25
5f1b905
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
import requests
import torch
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers.models import AutoencoderKL
from PIL import Image
from RealESRGAN import RealESRGAN
import cv2
import numpy as np
from diffusers.models.attention_processor import AttnProcessor2_0
import gradio as gr
import spaces

USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def download_file(url, folder_path, filename):
    if not os.path.exists(folder_path):
        os.makedirs(folder_path)
    file_path = os.path.join(folder_path, filename)

    if os.path.isfile(file_path):
        print(f"File already exists: {file_path}")
    else:
        response = requests.get(url, stream=True)
        if response.status_code == 200:
            with open(file_path, 'wb') as file:
                for chunk in response.iter_content(chunk_size=1024):
                    file.write(chunk)
            print(f"File successfully downloaded and saved: {file_path}")
        else:
            print(f"Error downloading the file. Status code: {response.status_code}")

def download_models():
    models = {
        "MODEL": ("https://huggingface.co/dantea1118/juggernaut_reborn/resolve/main/juggernaut_reborn.safetensors?download=true", "models/models/Stable-diffusion", "juggernaut_reborn.safetensors"),
        "UPSCALER_X2": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth?download=true", "models/upscalers/", "RealESRGAN_x2.pth"),
        "UPSCALER_X4": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth?download=true", "models/upscalers/", "RealESRGAN_x4.pth"),
        "NEGATIVE_1": ("https://huggingface.co/philz1337x/embeddings/resolve/main/verybadimagenegative_v1.3.pt?download=true", "models/embeddings", "verybadimagenegative_v1.3.pt"),
        "NEGATIVE_2": ("https://huggingface.co/datasets/AddictiveFuture/sd-negative-embeddings/resolve/main/JuggernautNegative-neg.pt?download=true", "models/embeddings", "JuggernautNegative-neg.pt"),
        "LORA_1": ("https://huggingface.co/philz1337x/loras/resolve/main/SDXLrender_v2.0.safetensors?download=true", "models/Lora", "SDXLrender_v2.0.safetensors"),
        "LORA_2": ("https://huggingface.co/philz1337x/loras/resolve/main/more_details.safetensors?download=true", "models/Lora", "more_details.safetensors"),
        "CONTROLNET": ("https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11f1e_sd15_tile.pth?download=true", "models/ControlNet", "control_v11f1e_sd15_tile.pth"),
        "VAE": ("https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors?download=true", "models/VAE", "vae-ft-mse-840000-ema-pruned.safetensors"),
    }

    for model, (url, folder, filename) in models.items():
        download_file(url, folder, filename)

download_models()

import time

def timer_func(func):
    def wrapper(*args, **kwargs):
        start_time = time.time()
        result = func(*args, **kwargs)
        end_time = time.time()
        print(f"{func.__name__} took {end_time - start_time:.2f} seconds")
        return result
    return wrapper

class LazyLoadPipeline:
    def __init__(self):
        self.pipe = None

    @timer_func
    def load(self):
        if self.pipe is None:
            print("Starting to load the pipeline...")
            try:
                self.pipe = self.setup_pipeline()
                if ENABLE_CPU_OFFLOAD:
                    print("Enabling CPU offload...")
                    self.pipe.enable_model_cpu_offload()
                else:
                    print(f"Moving pipeline to device: {device}")
                    self.pipe.to(device)
                if USE_TORCH_COMPILE:
                    print("Compiling the model...")
                    self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)
            except Exception as e:
                print(f"Error loading pipeline: {str(e)}")
                raise

    @timer_func
    def setup_pipeline(self):
        print("Setting up the pipeline...")
        start_time = time.time()
        controlnet = ControlNetModel.from_single_file(
            "models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
        )
        print(f"ControlNet loaded in {time.time() - start_time:.2f} seconds")

        start_time = time.time()
        safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
        print(f"Safety checker loaded in {time.time() - start_time:.2f} seconds")

        start_time = time.time()
        model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors"
        pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
            model_path,
            controlnet=controlnet,
            torch_dtype=torch.float16,
            use_safetensors=True,
            safety_checker=safety_checker
        )
        print(f"Main pipeline loaded in {time.time() - start_time:.2f} seconds")

        start_time = time.time()
        vae = AutoencoderKL.from_single_file(
            "models/VAE/vae-ft-mse-840000-ema-pruned.safetensors",
            torch_dtype=torch.float16
        )
        pipe.vae = vae
        print(f"VAE loaded in {time.time() - start_time:.2f} seconds")

        print("Loading textual inversions and LoRA weights...")
        start_time = time.time()
        pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
        pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
        print(f"Textual inversions loaded in {time.time() - start_time:.2f} seconds")

        start_time = time.time()
        pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
        pipe.fuse_lora(lora_scale=0.5)
        pipe.load_lora_weights("models/Lora/more_details.safetensors")
        print(f"LoRA weights loaded in {time.time() - start_time:.2f} seconds")

        start_time = time.time()
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
        print(f"Scheduler and FreeU set up in {time.time() - start_time:.2f} seconds")

        return pipe

    def __call__(self, *args, **kwargs):
        self.load()
        return self.pipe(*args, **kwargs)

class LazyRealESRGAN:
    def __init__(self, device, scale):
        self.device = device
        self.scale = scale
        self.model = None

    def load_model(self):
        if self.model is None:
            self.model = RealESRGAN(self.device, scale=self.scale)
            self.model.load_weights(f'models/upscalers/RealESRGAN_x{self.scale}.pth', download=False)

    def predict(self, img):
        self.load_model()
        return self.model.predict(img)

lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)

@timer_func
def resize_and_upscale(input_image, resolution):
    scale = 2 if resolution <= 2048 else 4
    input_image = input_image.convert("RGB")
    W, H = input_image.size
    k = float(resolution) / min(H, W)
    H = int(round(H * k / 64.0)) * 64
    W = int(round(W * k / 64.0)) * 64
    img = input_image.resize((W, H), resample=Image.LANCZOS)
    if scale == 2:
        img = lazy_realesrgan_x2.predict(img)
    else:
        img = lazy_realesrgan_x4.predict(img)
    return img
    
@timer_func
def create_hdr_effect(original_image, hdr):
    if hdr == 0:
        return original_image
    cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR)
    factors = [1.0 - 0.9 * hdr, 1.0 - 0.7 * hdr, 1.0 - 0.45 * hdr,
               1.0 - 0.25 * hdr, 1.0, 1.0 + 0.2 * hdr,
               1.0 + 0.4 * hdr, 1.0 + 0.6 * hdr, 1.0 + 0.8 * hdr]
    images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors]
    merge_mertens = cv2.createMergeMertens()
    hdr_image = merge_mertens.process(images)
    hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
    return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))

lazy_pipe = LazyLoadPipeline()

@spaces.GPU
@timer_func
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
    print("Starting image processing...")
    torch.cuda.empty_cache()
    try:
        lazy_pipe.load()
        lazy_pipe.pipe.unet.set_attn_processor(AttnProcessor2_0())
        
        print("Resizing and upscaling image...")
        condition_image = resize_and_upscale(input_image, resolution)
        print("Applying HDR effect...")
        condition_image = create_hdr_effect(condition_image, hdr)
        
        prompt = "masterpiece, best quality, highres"
        negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
        
        options = {
            "prompt": prompt,
            "negative_prompt": negative_prompt,
            "image": condition_image,
            "control_image": condition_image,
            "width": condition_image.size[0],
            "height": condition_image.size[1],
            "strength": strength,
            "num_inference_steps": num_inference_steps,
            "guidance_scale": guidance_scale,
            "generator": torch.Generator(device=device).manual_seed(0),
        }
        
        print("Running inference...")
        result = lazy_pipe(**options).images[0]
        print("Image processing completed successfully")
        return result
    except Exception as e:
        print(f"Error during image processing: {str(e)}")
        raise gr.Error(f"An error occurred: {str(e)}")

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Image Enhancement with Stable Diffusion")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
            run_button = gr.Button("Enhance Image")
        with gr.Column():
            output_image = gr.Image(type="pil", label="Enhanced Image")
    with gr.Accordion("Advanced Options", open=False):
        resolution = gr.Slider(minimum=512, maximum=2048, value=1024, step=64, label="Resolution")
        num_inference_steps = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Inference Steps")
        strength = gr.Slider(minimum=0, maximum=1, value=0.35, step=0.05, label="Strength")
        hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
        guidance_scale = gr.Slider(minimum=0, maximum=20, value=3, step=0.5, label="Guidance Scale")

    run_button.click(fn=gradio_process_image, 
                     inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
                     outputs=output_image)

demo.launch(share=True)