Spaces:
Running
on
Zero
Running
on
Zero
gokaygokay
commited on
Commit
•
9632f25
1
Parent(s):
82a71e3
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
-
import spaces
|
2 |
import os
|
3 |
import requests
|
4 |
import torch
|
5 |
-
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler
|
6 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
7 |
from diffusers.models import AutoencoderKL
|
8 |
from PIL import Image
|
@@ -11,15 +10,13 @@ import cv2
|
|
11 |
import numpy as np
|
12 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
13 |
import gradio as gr
|
|
|
14 |
|
15 |
-
USE_TORCH_COMPILE = 0
|
16 |
-
ENABLE_CPU_OFFLOAD = 0
|
17 |
|
18 |
-
# Set up the device
|
19 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
|
21 |
-
|
22 |
-
# Function to download files (from the example)
|
23 |
def download_file(url, folder_path, filename):
|
24 |
if not os.path.exists(folder_path):
|
25 |
os.makedirs(folder_path)
|
@@ -37,7 +34,6 @@ def download_file(url, folder_path, filename):
|
|
37 |
else:
|
38 |
print(f"Error downloading the file. Status code: {response.status_code}")
|
39 |
|
40 |
-
# Download necessary models and files
|
41 |
def download_models():
|
42 |
models = {
|
43 |
"MODEL": ("https://huggingface.co/dantea1118/juggernaut_reborn/resolve/main/juggernaut_reborn.safetensors?download=true", "models/models/Stable-diffusion", "juggernaut_reborn.safetensors"),
|
@@ -56,9 +52,6 @@ def download_models():
|
|
56 |
|
57 |
download_models()
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
class LazyRealESRGAN:
|
63 |
def __init__(self, device, scale):
|
64 |
self.device = device
|
@@ -74,72 +67,49 @@ class LazyRealESRGAN:
|
|
74 |
self.load_model()
|
75 |
return self.model.predict(img)
|
76 |
|
77 |
-
# Initialize the lazy models
|
78 |
lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
|
79 |
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)
|
80 |
|
81 |
def resize_and_upscale(input_image, resolution):
|
82 |
-
scale = 2
|
83 |
-
if resolution == 2048:
|
84 |
-
init_w = 1024
|
85 |
-
elif resolution == 2560:
|
86 |
-
init_w = 1280
|
87 |
-
elif resolution == 3072:
|
88 |
-
init_w = 1536
|
89 |
-
else:
|
90 |
-
init_w = 1024
|
91 |
-
scale = 4
|
92 |
-
|
93 |
input_image = input_image.convert("RGB")
|
94 |
W, H = input_image.size
|
95 |
-
k = float(
|
96 |
-
H
|
97 |
-
W
|
98 |
-
H = int(round(H / 64.0)) * 64
|
99 |
-
W = int(round(W / 64.0)) * 64
|
100 |
img = input_image.resize((W, H), resample=Image.LANCZOS)
|
101 |
-
model = RealESRGAN(device, scale=scale)
|
102 |
-
model.load_weights(f'models/upscalers/RealESRGAN_x{scale}.pth', download=False)
|
103 |
-
img = model.predict(img)
|
104 |
if scale == 2:
|
105 |
img = lazy_realesrgan_x2.predict(img)
|
106 |
else:
|
107 |
img = lazy_realesrgan_x4.predict(img)
|
108 |
return img
|
109 |
|
110 |
-
def calculate_brightness_factors(hdr_intensity):
|
111 |
-
factors = [1.0] * 9
|
112 |
-
if hdr_intensity > 0:
|
113 |
-
factors = [1.0 - 0.9 * hdr_intensity, 1.0 - 0.7 * hdr_intensity, 1.0 - 0.45 * hdr_intensity,
|
114 |
-
1.0 - 0.25 * hdr_intensity, 1.0, 1.0 + 0.2 * hdr_intensity,
|
115 |
-
1.0 + 0.4 * hdr_intensity, 1.0 + 0.6 * hdr_intensity, 1.0 + 0.8 * hdr_intensity]
|
116 |
-
return factors
|
117 |
-
|
118 |
-
def pil_to_cv(pil_image):
|
119 |
-
return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
120 |
-
|
121 |
-
def adjust_brightness(cv_image, factor):
|
122 |
-
hsv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)
|
123 |
-
h, s, v = cv2.split(hsv_image)
|
124 |
-
v = np.clip(v * factor, 0, 255).astype('uint8')
|
125 |
-
adjusted_hsv = cv2.merge([h, s, v])
|
126 |
-
return cv2.cvtColor(adjusted_hsv, cv2.COLOR_HSV2BGR)
|
127 |
-
|
128 |
def create_hdr_effect(original_image, hdr):
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
133 |
merge_mertens = cv2.createMergeMertens()
|
134 |
hdr_image = merge_mertens.process(images)
|
135 |
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
|
136 |
-
|
137 |
-
|
138 |
-
return hdr_image_pil
|
139 |
|
140 |
-
class
|
141 |
def __init__(self):
|
142 |
-
self.pipe =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
def setup_pipeline(self):
|
145 |
controlnet = ControlNetModel.from_single_file(
|
@@ -172,35 +142,38 @@ class ImageProcessor:
|
|
172 |
|
173 |
return pipe
|
174 |
|
175 |
-
def
|
176 |
-
|
177 |
-
|
178 |
|
179 |
-
|
180 |
-
prompt=prompt,
|
181 |
-
negative_prompt=negative_prompt,
|
182 |
-
image=condition_image,
|
183 |
-
control_image=condition_image,
|
184 |
-
width=condition_image.size[0],
|
185 |
-
height=condition_image.size[1],
|
186 |
-
strength=strength,
|
187 |
-
num_inference_steps=num_inference_steps,
|
188 |
-
guidance_scale=guidance_scale,
|
189 |
-
generator=torch.manual_seed(0),
|
190 |
-
).images[0]
|
191 |
-
|
192 |
-
return result
|
193 |
-
|
194 |
-
|
195 |
-
image_processor = ImageProcessor()
|
196 |
|
197 |
@spaces.GPU
|
198 |
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
201 |
prompt = "masterpiece, best quality, highres"
|
202 |
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
return result
|
205 |
|
206 |
# Gradio interface
|
@@ -214,7 +187,7 @@ with gr.Blocks() as demo:
|
|
214 |
output_image = gr.Image(type="pil", label="Enhanced Image")
|
215 |
with gr.Accordion("Advanced Options", open=False):
|
216 |
resolution = gr.Slider(minimum=512, maximum=2048, value=1024, step=64, label="Resolution")
|
217 |
-
num_inference_steps = gr.Slider(minimum=1, maximum=
|
218 |
strength = gr.Slider(minimum=0, maximum=1, value=0.35, step=0.05, label="Strength")
|
219 |
hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
|
220 |
guidance_scale = gr.Slider(minimum=0, maximum=20, value=3, step=0.5, label="Guidance Scale")
|
|
|
|
|
1 |
import os
|
2 |
import requests
|
3 |
import torch
|
4 |
+
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler
|
5 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
6 |
from diffusers.models import AutoencoderKL
|
7 |
from PIL import Image
|
|
|
10 |
import numpy as np
|
11 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
12 |
import gradio as gr
|
13 |
+
import spaces
|
14 |
|
15 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
16 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
17 |
|
|
|
18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
|
|
|
|
|
20 |
def download_file(url, folder_path, filename):
|
21 |
if not os.path.exists(folder_path):
|
22 |
os.makedirs(folder_path)
|
|
|
34 |
else:
|
35 |
print(f"Error downloading the file. Status code: {response.status_code}")
|
36 |
|
|
|
37 |
def download_models():
|
38 |
models = {
|
39 |
"MODEL": ("https://huggingface.co/dantea1118/juggernaut_reborn/resolve/main/juggernaut_reborn.safetensors?download=true", "models/models/Stable-diffusion", "juggernaut_reborn.safetensors"),
|
|
|
52 |
|
53 |
download_models()
|
54 |
|
|
|
|
|
|
|
55 |
class LazyRealESRGAN:
|
56 |
def __init__(self, device, scale):
|
57 |
self.device = device
|
|
|
67 |
self.load_model()
|
68 |
return self.model.predict(img)
|
69 |
|
|
|
70 |
lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
|
71 |
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)
|
72 |
|
73 |
def resize_and_upscale(input_image, resolution):
|
74 |
+
scale = 2 if resolution <= 2048 else 4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
input_image = input_image.convert("RGB")
|
76 |
W, H = input_image.size
|
77 |
+
k = float(resolution) / min(H, W)
|
78 |
+
H = int(round(H * k / 64.0)) * 64
|
79 |
+
W = int(round(W * k / 64.0)) * 64
|
|
|
|
|
80 |
img = input_image.resize((W, H), resample=Image.LANCZOS)
|
|
|
|
|
|
|
81 |
if scale == 2:
|
82 |
img = lazy_realesrgan_x2.predict(img)
|
83 |
else:
|
84 |
img = lazy_realesrgan_x4.predict(img)
|
85 |
return img
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
def create_hdr_effect(original_image, hdr):
|
88 |
+
if hdr == 0:
|
89 |
+
return original_image
|
90 |
+
cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR)
|
91 |
+
factors = [1.0 - 0.9 * hdr, 1.0 - 0.7 * hdr, 1.0 - 0.45 * hdr,
|
92 |
+
1.0 - 0.25 * hdr, 1.0, 1.0 + 0.2 * hdr,
|
93 |
+
1.0 + 0.4 * hdr, 1.0 + 0.6 * hdr, 1.0 + 0.8 * hdr]
|
94 |
+
images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors]
|
95 |
merge_mertens = cv2.createMergeMertens()
|
96 |
hdr_image = merge_mertens.process(images)
|
97 |
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
|
98 |
+
return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
|
|
|
|
|
99 |
|
100 |
+
class LazyLoadPipeline:
|
101 |
def __init__(self):
|
102 |
+
self.pipe = None
|
103 |
+
|
104 |
+
def load(self):
|
105 |
+
if self.pipe is None:
|
106 |
+
self.pipe = self.setup_pipeline()
|
107 |
+
if ENABLE_CPU_OFFLOAD:
|
108 |
+
self.pipe.enable_model_cpu_offload()
|
109 |
+
else:
|
110 |
+
self.pipe.to(device)
|
111 |
+
if USE_TORCH_COMPILE:
|
112 |
+
self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)
|
113 |
|
114 |
def setup_pipeline(self):
|
115 |
controlnet = ControlNetModel.from_single_file(
|
|
|
142 |
|
143 |
return pipe
|
144 |
|
145 |
+
def __call__(self, *args, **kwargs):
|
146 |
+
self.load()
|
147 |
+
return self.pipe(*args, **kwargs)
|
148 |
|
149 |
+
lazy_pipe = LazyLoadPipeline()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
@spaces.GPU
|
152 |
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
153 |
+
torch.cuda.empty_cache()
|
154 |
+
lazy_pipe.load()
|
155 |
+
lazy_pipe.pipe.unet.set_attn_processor(AttnProcessor2_0())
|
156 |
+
|
157 |
+
condition_image = resize_and_upscale(input_image, resolution)
|
158 |
+
condition_image = create_hdr_effect(condition_image, hdr)
|
159 |
+
|
160 |
prompt = "masterpiece, best quality, highres"
|
161 |
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
|
162 |
+
|
163 |
+
options = {
|
164 |
+
"prompt": prompt,
|
165 |
+
"negative_prompt": negative_prompt,
|
166 |
+
"image": condition_image,
|
167 |
+
"control_image": condition_image,
|
168 |
+
"width": condition_image.size[0],
|
169 |
+
"height": condition_image.size[1],
|
170 |
+
"strength": strength,
|
171 |
+
"num_inference_steps": num_inference_steps,
|
172 |
+
"guidance_scale": guidance_scale,
|
173 |
+
"generator": torch.Generator(device=device).manual_seed(0),
|
174 |
+
}
|
175 |
+
|
176 |
+
result = lazy_pipe(**options).images[0]
|
177 |
return result
|
178 |
|
179 |
# Gradio interface
|
|
|
187 |
output_image = gr.Image(type="pil", label="Enhanced Image")
|
188 |
with gr.Accordion("Advanced Options", open=False):
|
189 |
resolution = gr.Slider(minimum=512, maximum=2048, value=1024, step=64, label="Resolution")
|
190 |
+
num_inference_steps = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Inference Steps")
|
191 |
strength = gr.Slider(minimum=0, maximum=1, value=0.35, step=0.05, label="Strength")
|
192 |
hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
|
193 |
guidance_scale = gr.Slider(minimum=0, maximum=20, value=3, step=0.5, label="Guidance Scale")
|