Spaces:
Running
on
Zero
Running
on
Zero
gokaygokay
commited on
Commit
•
05f54e2
1
Parent(s):
4297781
Update app.py
Browse files
app.py
CHANGED
@@ -97,21 +97,34 @@ def create_hdr_effect(original_image, hdr):
|
|
97 |
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
|
98 |
return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
|
99 |
|
|
|
|
|
100 |
class LazyLoadPipeline:
|
101 |
def __init__(self):
|
102 |
self.pipe = None
|
103 |
|
104 |
def load(self):
|
105 |
if self.pipe is None:
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
def setup_pipeline(self):
|
|
|
115 |
controlnet = ControlNetModel.from_single_file(
|
116 |
"models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
|
117 |
)
|
@@ -132,6 +145,7 @@ class LazyLoadPipeline:
|
|
132 |
)
|
133 |
pipe.vae = vae
|
134 |
|
|
|
135 |
pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
|
136 |
pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
|
137 |
pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
|
@@ -150,31 +164,40 @@ lazy_pipe = LazyLoadPipeline()
|
|
150 |
|
151 |
@spaces.GPU
|
152 |
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
|
|
153 |
torch.cuda.empty_cache()
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
"
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
# Gradio interface
|
180 |
with gr.Blocks() as demo:
|
|
|
97 |
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
|
98 |
return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
|
99 |
|
100 |
+
import time
|
101 |
+
|
102 |
class LazyLoadPipeline:
|
103 |
def __init__(self):
|
104 |
self.pipe = None
|
105 |
|
106 |
def load(self):
|
107 |
if self.pipe is None:
|
108 |
+
print("Starting to load the pipeline...")
|
109 |
+
start_time = time.time()
|
110 |
+
try:
|
111 |
+
self.pipe = self.setup_pipeline()
|
112 |
+
if ENABLE_CPU_OFFLOAD:
|
113 |
+
print("Enabling CPU offload...")
|
114 |
+
self.pipe.enable_model_cpu_offload()
|
115 |
+
else:
|
116 |
+
print(f"Moving pipeline to device: {device}")
|
117 |
+
self.pipe.to(device)
|
118 |
+
if USE_TORCH_COMPILE:
|
119 |
+
print("Compiling the model...")
|
120 |
+
self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)
|
121 |
+
print(f"Pipeline loaded successfully in {time.time() - start_time:.2f} seconds")
|
122 |
+
except Exception as e:
|
123 |
+
print(f"Error loading pipeline: {str(e)}")
|
124 |
+
raise
|
125 |
|
126 |
def setup_pipeline(self):
|
127 |
+
print("Setting up the pipeline...")
|
128 |
controlnet = ControlNetModel.from_single_file(
|
129 |
"models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
|
130 |
)
|
|
|
145 |
)
|
146 |
pipe.vae = vae
|
147 |
|
148 |
+
print("Loading textual inversions and LoRA weights...")
|
149 |
pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
|
150 |
pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
|
151 |
pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
|
|
|
164 |
|
165 |
@spaces.GPU
|
166 |
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
167 |
+
print("Starting image processing...")
|
168 |
torch.cuda.empty_cache()
|
169 |
+
try:
|
170 |
+
lazy_pipe.load()
|
171 |
+
lazy_pipe.pipe.unet.set_attn_processor(AttnProcessor2_0())
|
172 |
+
|
173 |
+
print("Resizing and upscaling image...")
|
174 |
+
condition_image = resize_and_upscale(input_image, resolution)
|
175 |
+
print("Applying HDR effect...")
|
176 |
+
condition_image = create_hdr_effect(condition_image, hdr)
|
177 |
+
|
178 |
+
prompt = "masterpiece, best quality, highres"
|
179 |
+
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
|
180 |
+
|
181 |
+
options = {
|
182 |
+
"prompt": prompt,
|
183 |
+
"negative_prompt": negative_prompt,
|
184 |
+
"image": condition_image,
|
185 |
+
"control_image": condition_image,
|
186 |
+
"width": condition_image.size[0],
|
187 |
+
"height": condition_image.size[1],
|
188 |
+
"strength": strength,
|
189 |
+
"num_inference_steps": num_inference_steps,
|
190 |
+
"guidance_scale": guidance_scale,
|
191 |
+
"generator": torch.Generator(device=device).manual_seed(0),
|
192 |
+
}
|
193 |
+
|
194 |
+
print("Running inference...")
|
195 |
+
result = lazy_pipe(**options).images[0]
|
196 |
+
print("Image processing completed successfully")
|
197 |
+
return result
|
198 |
+
except Exception as e:
|
199 |
+
print(f"Error during image processing: {str(e)}")
|
200 |
+
raise gr.Error(f"An error occurred: {str(e)}")
|
201 |
|
202 |
# Gradio interface
|
203 |
with gr.Blocks() as demo:
|