File size: 12,888 Bytes
4b68381
 
c318f99
0ac9acd
c603f69
8cba5f8
c318f99
ba6c983
fba8193
71166ce
4b68381
18438e9
527c7ca
 
 
 
 
 
18438e9
17249dc
df022b3
3910b68
df022b3
 
 
 
3910b68
df022b3
3910b68
df022b3
 
 
 
 
 
3910b68
df022b3
 
 
a268f6c
 
 
 
 
 
 
 
 
 
 
3910b68
b0f6e99
a8d856c
cfc693b
3910b68
bd326b8
c318f99
4b68381
a8d856c
b36d1b3
 
 
 
 
 
 
 
 
 
4f8876e
b36d1b3
 
7b14097
b36d1b3
 
 
 
 
 
 
 
da0d4b5
d2e8577
fba8193
098ca40
8786994
 
 
2e5f1e1
ad5d544
 
2e5f1e1
a3f2892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58e577a
a3f2892
 
 
58e577a
a3f2892
c603f69
03b509e
c603f69
 
8786994
c603f69
 
03b509e
c603f69
2e5f1e1
 
 
b654e25
 
 
 
 
 
 
d86bdf9
 
b654e25
d89ec26
88f86f4
b654e25
 
d86bdf9
2e5f1e1
b654e25
2e5f1e1
b654e25
ad5d544
2e5f1e1
b654e25
ad5d544
b654e25
098ca40
a2fbaf9
 
 
 
 
 
88f86f4
 
a2fbaf9
9c24e66
a2fbaf9
 
 
88f86f4
 
a2fbaf9
 
 
 
9f3b801
d283271
9f3b801
a2fbaf9
2e5f1e1
a2fbaf9
 
2e5f1e1
78b5466
1cee5ae
f17ebf3
78b5466
8786994
 
dc425c6
2e5f1e1
78b5466
bdd90e4
 
78b5466
bdd90e4
78b5466
 
bdd90e4
 
 
 
78b5466
4c3dcca
 
 
2864c62
 
 
8b09f68
67830d9
 
2864c62
 
 
67830d9
 
7b357aa
67830d9
14a3d68
 
 
 
2864c62
 
 
78b5466
8b09f68
6e99dec
bdd90e4
 
78b5466
 
8a769c2
 
fcfd1df
 
8a769c2
 
 
 
 
dc3f6f6
 
3a1ee0e
 
0d64126
fcfd1df
3a1ee0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527c7ca
3a1ee0e
 
 
 
 
78b5466
 
8cba5f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eb045d
8cba5f8
 
 
4eb045d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import streamlit as st
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import plotly.express as px 

st.set_page_config(layout="wide")

df = pd.read_csv('last_results_8.csv')

temp_data = pd.read_csv('temp_data(2).csv')
temp_data['Data_Completa'] = pd.to_datetime(temp_data['Data_Completa'])
temp_data.sort_values(['Instituição', 'Conta', 'Data_Completa'], inplace=True)
temp_data['Últimos 12 meses'] = temp_data.groupby(['Instituição', 'Conta'])['Valor'].transform(lambda x: x.rolling(window=12, min_periods=1).sum())
last_dates = temp_data.groupby(['Instituição', 'Conta'])['Data_Completa'].transform(max)
last_rows = temp_data[temp_data['Data_Completa'] == last_dates]
ultimo_ano = last_rows[['Instituição', 'Conta', 'Últimos 12 meses']]

image1 = 'images/rs_pmpa.PNG'

title_html = """
    <style>
        @font-face {
            font-family: 'Quicksand';
            src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype');
        }
        body {
            font-family: 'Quicksand', sans-serif;
        }
        .custom-title {
            color: darkgreen;
            font-size: 30px;
            font-weight: bold;
        }
    </style>
    <span class='custom-title'>PREVISÕES DE RECEITAS</span>
"""

# Set a fixed width for the sidebar
st.markdown(
    """
    <style>
        .sidebar .sidebar-content {
            width: 300px;
        }
    </style>
    """,
    unsafe_allow_html=True
)


with st.sidebar:
    st.image(image1, use_column_width=True)
    st.markdown(title_html, unsafe_allow_html=True)
    selected_instituicao = st.selectbox('Seleciona Instituição', df['Instituição'].unique())
    selected_conta = st.selectbox('Seleciona Conta', df['Conta'].unique())

# Filter the DataFrame based on selected values
#filtered_df = df[(df['Instituição'] == selected_instituicao) & (df['Conta'] == selected_conta)]

# Initial filtering based on selected 'Instituição'
instituicao_df = df[df['Instituição'] == selected_instituicao]

# Container for adjusted DataFrame rows
adjusted_rows = []

# Iterate through each unique 'Conta' within the selected 'Instituição'
for conta in instituicao_df['Conta'].unique():
    conta_df = instituicao_df[instituicao_df['Conta'] == selected_conta]
    
    # Check if 'Linear Regression' is available for this 'Conta'
    if len(conta_df['Modelo'].unique()) > 1 and "Linear Regression" in conta_df['Modelo'].unique():
        lr_rows = conta_df[conta_df['Modelo'] == 'Linear Regression']
        adjusted_rows.append(lr_rows)
    else:
        # If not, include all models' results for this 'Conta'
        adjusted_rows.append(conta_df)

# Combine all adjusted rows back into a single DataFrame
filtered_df = pd.concat(adjusted_rows)

#col1, col2, col3 = st.columns(3) # This divides the page into three equal parts

# Set custom width for columns
col1_width = 500
col2_width = 500
col3_width = 500
col1, col2, col3 = st.columns([col1_width, col2_width, col3_width])

# Display the Forecasts values in the first column
col1.header('Composição da RLIT')

tab_df = df[df['Instituição'] == selected_instituicao]

data = []

for conta in tab_df['Conta'].unique():
    # Filter the DataFrame for the current 'Conta'
    conta_df = tab_df[tab_df['Conta'] == conta]

    if len(conta_df['Modelo'].unique()) > 1 and "Linear Regression" in conta_df['Modelo'].unique():
        conta_df = conta_df[conta_df['Modelo'] == "Linear Regression"]

    # Initialize a variable to store the sum for the current 'Conta'
    conta_sum = 0.0

    # Take the first 'Modelo' for simplicity
    modelo = conta_df['Modelo'].iloc[0]

    # Iterate over each row in the filtered DataFrame for the current 'Conta'
    for _, row in conta_df.iterrows():
        lines = row['Forecasts'].split('\n')
        for line in lines[:-1]:  # Skip the summary line
            if line.strip():
                parts = line.split()
                value = parts[-1]
                try:
                    conta_sum += float(value)
                except ValueError:
                    print(f"Skipping line unable to convert to float: {line}")

    # Append the data to the list
    data.append({'Conta': conta, 'Modelo': modelo, 'Próximos 12 meses': conta_sum})

# Convert the list to a DataFrame
table_data = pd.DataFrame(data)
total_sum = table_data['Próximos 12 meses'].sum()

labels = table_data['Conta']
sizes = [(i / total_sum) * 100 for i in table_data['Próximos 12 meses']]

fig1, ax1 = plt.subplots()
ax1.pie(sizes, labels=labels, autopct='%1.1f%%',)
ax1.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle.

col1.pyplot(fig1)


# Display the Forecasts values in the first column
col2.header('Valores previstos')

if not filtered_df.empty:
    data_string = filtered_df['Forecasts'].iloc[0]

    # Split the string into lines
    lines = data_string.split('\n')

    mes = 0

    # Iterate through the lines and extract the values
    for line in lines[:-1]:  # Skip the last two lines which might not contain forecast data
        period, value = line.split()
        num_float = float(value)
        monetary_value = f'R$ {num_float:,.2f}'  # Adding commas for thousands separator
        mes += 1
        col2.write(f"Mês {mes}: {monetary_value}")
else:
    col2.warning('No data available for the selected filters.')

# Display the Forecasts values as line plots in the second column
col3.header('Gráfico com previsões')

if not filtered_df.empty:
    data_string = filtered_df['Forecasts'].iloc[0]

    # Create a list to store data for each period
    data = []

    # Split the string into lines
    lines = data_string.split('\n')

    mes = 0

    # Iterate through the lines and extract the values
    for line in lines[:-1]:
        period, value = line.split()
        num_float = float(value)
        monetary_value = f'R$ {num_float:,.2f}'  # Adding commas for thousands separator
        mes += 1
        data.append({'Period': int(mes), 'Monetary Value': num_float})

    # Create a DataFrame from the list
    chart_data = pd.DataFrame(data)

    # Sort the DataFrame by 'Period'
    chart_data = chart_data.sort_values(by='Period')

    # Display line chart with "period" on X-axis and "Monetary Value" on Y-axis
    col3.line_chart(chart_data.set_index('Period'))

else:
    col3.warning('No data available for the selected filters.')

# Display the table in the third column
#col3 = st.columns(1)  # You can use st.columns(1) to create a single column layout

col4_width = 750
col5_width = 750
col4, col5 = st.columns([col4_width, col5_width])

if not filtered_df.empty:
    # Filter the DataFrame for the selected institution
    tab_df = df[df['Instituição'] == selected_instituicao]

    # Create an empty list to store data
    data = []

    # Iterate through each unique 'Conta' in the filtered DataFrame
    for conta in tab_df['Conta'].unique():
        # Filter the DataFrame for the current 'Conta'
        conta_df = tab_df[tab_df['Conta'] == conta]

        if len(conta_df['Modelo'].unique()) > 1 and "Linear Regression" in conta_df['Modelo'].unique():
            conta_df = conta_df[conta_df['Modelo'] == "Linear Regression"]

        # Initialize a variable to store the sum for the current 'Conta'
        conta_sum = 0.0

        # Take the first 'Modelo' for simplicity
        modelo = conta_df['Modelo'].iloc[0]

        # Iterate over each row in the filtered DataFrame for the current 'Conta'
        for _, row in conta_df.iterrows():
            lines = row['Forecasts'].split('\n')
            for line in lines[:-1]:  # Skip the summary line
                if line.strip():
                    parts = line.split()
                    value = parts[-1]
                    try:
                        conta_sum += float(value)
                    except ValueError:
                        print(f"Skipping line unable to convert to float: {line}")

        # Format the sum as a monetary value
        monetary_value = f'R$ {conta_sum:,.2f}'

        # Append the data to the list
        data.append({'Conta': conta, 'Modelo': modelo, 'Próximos 12 meses': monetary_value})

    # Convert the list to a DataFrame
    table_data = pd.DataFrame(data)

    last_df = ultimo_ano[ultimo_ano['Instituição'] == selected_instituicao]
    last_df.drop(['Instituição'], axis=1, inplace=True)
    print(last_df)
    last_sum = last_df.iloc[:,-1].sum()
    def format_currency(x):
        return "R${:,.2f}".format(x)
    last_df['Últimos 12 meses'] = last_df['Últimos 12 meses'].apply(format_currency)
    table_data = pd.merge(table_data, last_df)

    print(table_data)

    try:
        # Calculate the grand total sum of 'Próximos 12 meses' and 'Últimos 12 meses' values
        total_sum =  sum(float(row['Próximos 12 meses'].replace('R$ ', '').replace(',', '')) for row in data)
        total_sum_prev = last_sum

        # Append the "Total" row
        total_row = pd.DataFrame({
            'Conta': ['TOTAL (RLIT)'],
            'Modelo': [''],
            'Próximos 12 meses': [f'R$ {total_sum:,.2f}'],
            'Últimos 12 meses': [f'R$ {total_sum_prev:,.2f}']
        })
        table_data = pd.concat([table_data, total_row], ignore_index=True)

        # Additional rows calculations and appending
        # Assuming percentages for health and education as previously mentioned
        saude_value = total_sum * 0.15
        educacao_value = total_sum * 0.25
        saude_value_prev = total_sum_prev * 0.15
        educacao_value_prev = total_sum_prev * 0.25
        saude_row = pd.DataFrame({'Conta': ['Saúde (15% da RLIT)'], 'Modelo': [''], 'Próximos 12 meses': [f'R$ {saude_value:,.2f}'], 'Últimos 12 meses': [f'R$ {saude_value_prev:,.2f}']})
        educacao_row = pd.DataFrame({'Conta': ['Educação (25% da RLIT)'], 'Modelo': [''], 'Próximos 12 meses': [f'R$ {educacao_value:,.2f}'], 'Últimos 12 meses': [f'R$ {educacao_value_prev:,.2f}']})

        # Append these rows to the table data
        table_data = pd.concat([table_data, saude_row, educacao_row], ignore_index=True)

        table_data.fillna('-', inplace=True)
    
        # Display the table using Streamlit
        st.table(table_data)

    except Exception as e:
        st.error(f"Error in processing data: {str(e)}")

else:
    col4.warning('No data available for the selected filters.')

col5.header('Realizado X Previsto')

for conta in tab_df['Conta'].unique():
    # Filter the DataFrame for the current 'Conta'
    conta_df = tab_df[tab_df['Conta'] == conta]

    if len(conta_df['Modelo'].unique()) > 1 and "Linear Regression" in conta_df['Modelo'].unique():
        conta_df = conta_df[conta_df['Modelo'] == "Linear Regression"]

    # Initialize a variable to store the sum for the current 'Conta'
    conta_sum = 0.0

    # Take the first 'Modelo' for simplicity
    modelo = conta_df['Modelo'].iloc[0]

    # Iterate over each row in the filtered DataFrame for the current 'Conta'
    for _, row in conta_df.iterrows():
        lines = row['Forecasts'].split('\n')
        for line in lines[:-1]:  # Skip the summary line
            if line.strip():
                parts = line.split()
                value = parts[-1]
                try:
                    conta_sum += float(value)
                except ValueError:
                    print(f"Skipping line unable to convert to float: {line}")

    # Append the data to the list
    data.append({'Conta': conta, 'Modelo': modelo, 'Próximos 12 meses': conta_sum})

last_df = ultimo_ano[ultimo_ano['Instituição'] == selected_instituicao]
last_df.drop(['Instituição'], axis=1, inplace=True)
print(last_df)
last_sum = last_df.iloc[:,-1].sum()

total_sum =  sum(float(row['Próximos 12 meses'].replace('R$ ', '').replace(',', '')) for row in data)
total_sum_prev = last_sum

saude_value = total_sum * 0.15
educacao_value = total_sum * 0.25
saude_value_prev = total_sum_prev * 0.15
educacao_value_prev = total_sum_prev * 0.25

data = {
    "Últimos 12 meses": [saude_value_prev, educacao_value_prev],  # Placeholder data for 'Last 12 Months'
    "Próximos 12 meses": [saude_value, educacao_value]  # Placeholder data for 'Next 12 Months'
}

# Define the index names
index_names = ["Saúde", "Educação"]  # 'Health' and 'Education'

df = pd.DataFrame(data, index=index_names).reset_index().melt(id_vars='index', var_name='Period', value_name='Value')

# Create the bar chart
fig = px.bar(df, x='index', y='Value', color='Period', barmode='group')
col5.write(fig)

st.markdown("""
    <b>Observação:</b> Previsões realizadas com dados extraídos do Relatório Resumido de Execução Orçamentária (RREO) até o 6º bimestre de 2023 no Sistema de Informações Contábeis e Fiscais do Setor Público Brasileiro (SICONFI). 
    [Link](https://siconfi.tesouro.gov.br/)
    """, unsafe_allow_html=True)