Spaces:
Sleeping
Sleeping
File size: 11,689 Bytes
4b68381 c318f99 0ac9acd c603f69 eeaecf1 c318f99 acbcd9b fba8193 3bf2525 9d69a17 3bf2525 9d69a17 3bf2525 9d69a17 5aad854 4b68381 18438e9 527c7ca 18438e9 f4b5b43 df022b3 3910b68 df022b3 3910b68 df022b3 3910b68 df022b3 3910b68 df022b3 a268f6c 3910b68 b0f6e99 a8d856c 64b9766 0c845e6 64b9766 944b7eb bd326b8 c318f99 4b68381 a8d856c b36d1b3 4f8876e b36d1b3 7b14097 b36d1b3 da0d4b5 098ca40 da611d3 a3f2892 d92dd7b 396201a d92dd7b f51907a 90fcc66 da611d3 eeaecf1 5563ebe 78b5466 c92a873 8cba5f8 55e2682 6c49f96 55e2682 da611d3 55e2682 64f85fb 55e2682 8cba5f8 da611d3 55e2682 8cba5f8 da611d3 4eb045d da611d3 4eb045d da611d3 55e2682 da611d3 55e2682 da611d3 fbac8c4 55e2682 5563ebe da611d3 55e2682 da611d3 55e2682 da611d3 4eb045d da611d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import streamlit as st
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.graph_objects as go
st.set_page_config(layout="wide")
st.markdown("""
<style>
@media (max-width: 768px) {
/* Smaller devices, less space */
.block-container>div>div {
flex: 1 1 100%; /* Make all columns take full width */
}
}
@media (min-width: 769px) and (max-width: 1024px) {
/* Medium devices */
.block-container>div>div {
flex: 1; /* Default flex behavior */
}
.block-container>div>div:nth-child(1) {
flex: 0 1 50%; /* First column takes half of the space */
}
}
@media (min-width: 1025px) {
/* Larger devices */
.block-container>div>div:nth-child(1) {
flex: 0 1 33%; /* First column takes about a third of the space */
}
}
</style>
""", unsafe_allow_html=True)
df = pd.read_csv('last_results_11.csv')
temp_data = pd.read_csv('temp_data(2).csv')
temp_data['Data_Completa'] = pd.to_datetime(temp_data['Data_Completa'])
temp_data.sort_values(['Instituição', 'Conta', 'Data_Completa'], inplace=True)
temp_data['Últimos 12 meses'] = temp_data.groupby(['Instituição', 'Conta'])['Valor'].transform(lambda x: x.rolling(window=12, min_periods=1).sum())
last_dates = temp_data.groupby(['Instituição', 'Conta'])['Data_Completa'].transform(max)
last_rows = temp_data[temp_data['Data_Completa'] == last_dates]
ultimo_ano = last_rows[['Instituição', 'Conta', 'Últimos 12 meses']]
image1 = 'images/GOVERNO_RS.png'
image2 = 'images/SMF_H.png'
title_html = """
<style>
@font-face {
font-family: 'Quicksand';
src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype');
}
body {
font-family: 'Quicksand', sans-serif;
}
.custom-title {
color: darkgreen;
font-size: 30px;
font-weight: bold;
}
</style>
<span class='custom-title'>PREVISÕES DE RECEITAS</span>
"""
# Set a fixed width for the sidebar
st.markdown(
"""
<style>
.sidebar .sidebar-content {
width: 300px;
}
</style>
""",
unsafe_allow_html=True
)
with st.sidebar:
col1, col2 = st.columns(2) # Create two columns in the sidebar
with col1:
st.image(image1, width=160)
with col2:
st.image(image2, width=200)
#st.markdown(title_html, unsafe_allow_html=True)
selected_instituicao = st.selectbox('Seleciona Instituição', df['Instituição'].unique())
selected_conta = st.selectbox('Seleciona Conta', df['Conta'].unique())
# Filter the DataFrame based on selected values
#filtered_df = df[(df['Instituição'] == selected_instituicao) & (df['Conta'] == selected_conta)]
# Initial filtering based on selected 'Instituição'
instituicao_df = df[df['Instituição'] == selected_instituicao]
# Container for adjusted DataFrame rows
adjusted_rows = []
# Iterate through each unique 'Conta' within the selected 'Instituição'
for conta in instituicao_df['Conta'].unique():
conta_df = instituicao_df[instituicao_df['Conta'] == selected_conta]
# Check if 'Linear Regression' is available for this 'Conta'
if len(conta_df['Modelo'].unique()) > 1 and "Linear Regression" in conta_df['Modelo'].unique():
lr_rows = conta_df[conta_df['Modelo'] == 'Linear Regression']
adjusted_rows.append(lr_rows)
else:
# If not, include all models' results for this 'Conta'
adjusted_rows.append(conta_df)
# Combine all adjusted rows back into a single DataFrame
filtered_df = pd.concat(adjusted_rows)
# Set custom width for columns
tab1, tab2, tab3, tab4 = st.tabs(["Composição RLIT", "Valores Previstos", "Tabela Resumo", "Comparativo - Saúde e Eduacação"])
tab_df = df[df['Instituição'] == selected_instituicao]
data = []
ultimo_ano = last_rows[['Instituição', 'Conta', 'Últimos 12 meses']]
print(ultimo_ano)
with tab1:
municipio = ultimo_ano[ultimo_ano['Instituição'] == selected_instituicao]
labels = municipio['Conta']
total_sum = municipio['Últimos 12 meses'].sum()
sizes = [(i / total_sum) * 100 for i in municipio['Últimos 12 meses']]
#fig1, ax1 = plt.subplots()
#ax1.pie(sizes, labels=labels, autopct='%1.1f%%',)
#ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
fig = go.Figure(data=[go.Pie(labels=labels, values=sizes)])
#st.pyplot(fig1)
#st.plotly_chart(fig, theme=None, use_container_width=True)
st.plotly_chart(fig, theme=None)
with tab2:
#col1, col2= st.columns(2)
#if not filtered_df.empty:
#data_string = filtered_df['Forecasts'].iloc[0]
# Split the string into lines
#lines = data_string.split('\n')
#mes = 0
# Iterate through the lines and extract the values
#for line in lines[:-1]: # Skip the last two lines which might not contain forecast data
#period, value = line.split()
#num_float = float(value)
#monetary_value = f'R$ {num_float:,.2f}' # Adding commas for thousands separator
#mes += 1
#col1.write(f"Mês {mes}: {monetary_value}")
#else:
#col1.warning('No data available for the selected filters.')
# Display the Forecasts values as line plots in the second column
if not filtered_df.empty:
data_string = filtered_df['Forecasts'].iloc[0]
# Create a list to store data for each period
data = []
# Split the string into lines
lines = data_string.split('\n')
mes = 0
# Iterate through the lines and extract the values
for line in lines[:-1]:
period, value = line.split()
num_float = float(value)
monetary_value = f'R$ {num_float:,.2f}' # Adding commas for thousands separator
mes += 1
data.append({'Período': int(mes), 'Valores Previstos': num_float})
# Create a DataFrame from the list
chart_data = pd.DataFrame(data)
# Sort the DataFrame by 'Período'
chart_data = chart_data.sort_values(by='Período')
# Display line chart with "period" on X-axis and "Monetary Value" on Y-axis
#col2.line_chart(chart_data.set_index('Period'))
fig = px.line(chart_data, x="Período", y="Valores Previstos")
#st.plotly_chart(fig, theme=None, use_container_width=True)
st.plotly_chart(fig, theme=None)
else:
st.warning('Sem dados para os filtros selecionados.')
with tab3:
if not filtered_df.empty:
# Filter the DataFrame for the selected institution
tab_df = df[df['Instituição'] == selected_instituicao]
# Create an empty list to store data
data = []
# Iterate through each unique 'Conta' in the filtered DataFrame
for conta in tab_df['Conta'].unique():
# Filter the DataFrame for the current 'Conta'
conta_df = tab_df[tab_df['Conta'] == conta]
if len(conta_df['Modelo'].unique()) > 1 and "Linear Regression" in conta_df['Modelo'].unique():
conta_df = conta_df[conta_df['Modelo'] == "Linear Regression"]
# Initialize a variable to store the sum for the current 'Conta'
conta_sum = 0.0
# Take the first 'Modelo' for simplicity
modelo = conta_df['Modelo'].iloc[0]
# Iterate over each row in the filtered DataFrame for the current 'Conta'
for _, row in conta_df.iterrows():
lines = row['Forecasts'].split('\n')
for line in lines[:-1]: # Skip the summary line
if line.strip():
parts = line.split()
value = parts[-1]
try:
conta_sum += float(value)
except ValueError:
print(f"Skipping line unable to convert to float: {line}")
# Format the sum as a monetary value
monetary_value = f'R$ {conta_sum:,.2f}'
# Append the data to the list
data.append({'Conta': conta, 'Modelo': modelo, 'Próximos 12 meses': monetary_value})
# Convert the list to a DataFrame
table_data = pd.DataFrame(data)
last_df = ultimo_ano[ultimo_ano['Instituição'] == selected_instituicao]
last_df.drop(['Instituição'], axis=1, inplace=True)
print(last_df)
last_sum = last_df.iloc[:,-1].sum()
def format_currency(x):
return "R${:,.2f}".format(x)
last_df['Últimos 12 meses'] = last_df['Últimos 12 meses'].apply(format_currency)
table_data = pd.merge(table_data, last_df)
print(table_data)
try:
# Calculate the grand total sum of 'Próximos 12 meses' and 'Últimos 12 meses' values
total_sum = sum(float(row['Próximos 12 meses'].replace('R$ ', '').replace(',', '')) for row in data)
total_sum_prev = last_sum
# Append the "Total" row
total_row = pd.DataFrame({
'Conta': ['TOTAL (RLIT)'],
'Modelo': [''],
'Próximos 12 meses': [f'R$ {total_sum:,.2f}'],
'Últimos 12 meses': [f'R$ {total_sum_prev:,.2f}']
})
table_data = pd.concat([table_data, total_row], ignore_index=True)
# Additional rows calculations and appending
# Assuming percentages for health and education as previously mentioned
saude_value = total_sum * 0.15
educacao_value = total_sum * 0.25
saude_value_prev = total_sum_prev * 0.15
educacao_value_prev = total_sum_prev * 0.25
saude_row = pd.DataFrame({'Conta': ['Saúde (15% da RLIT)'], 'Modelo': [''], 'Próximos 12 meses': [f'R$ {saude_value:,.2f}'], 'Últimos 12 meses': [f'R$ {saude_value_prev:,.2f}']})
educacao_row = pd.DataFrame({'Conta': ['Educação (25% da RLIT)'], 'Modelo': [''], 'Próximos 12 meses': [f'R$ {educacao_value:,.2f}'], 'Últimos 12 meses': [f'R$ {educacao_value_prev:,.2f}']})
# Append these rows to the table data
table_data = pd.concat([table_data, saude_row, educacao_row], ignore_index=True)
table_data.fillna('-', inplace=True)
# Display the table using Streamlit
st.table(table_data)
except Exception as e:
st.error(f"Error in processing data: {str(e)}")
else:
st.warning('Sem dados para os filtros selecionados.')
st.markdown("""
<b>Observação:</b> Previsões realizadas com dados extraídos do Relatório Resumido de Execução Orçamentária (RREO) até o 6º bimestre de 2023 no Sistema de Informações Contábeis e Fiscais do Setor Público Brasileiro (SICONFI).
[Link](https://siconfi.tesouro.gov.br/)
""", unsafe_allow_html=True)
with tab4:
data = {
"Últimos 12 meses": [saude_value_prev, educacao_value_prev], # Placeholder data for 'Last 12 Months'
"Próximos 12 meses": [saude_value, educacao_value] # Placeholder data for 'Next 12 Months'
}
# Define the index names
index_names = ["Saúde", "Educação"] # 'Health' and 'Education'
df = pd.DataFrame(data, index=index_names).reset_index().melt(id_vars='index', var_name='Period', value_name='Value')
# Create the bar chart
fig = px.bar(df, x='index', y='Value', color='Period', barmode='group')
st.write(fig) |