File size: 9,303 Bytes
efa1353
 
 
8020398
efa1353
0639262
 
 
 
 
 
 
c812124
669715f
 
 
 
 
 
 
7d299b1
669715f
 
 
 
 
 
 
 
bd18e87
669715f
 
 
 
 
 
39564a4
669715f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7983b33
669715f
0d04150
024ee6a
 
 
 
0d04150
 
 
024ee6a
 
 
 
0d04150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7983b33
669715f
0d04150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c24728c
8020398
bd18e87
0d04150
8020398
 
 
0d04150
 
 
 
 
 
 
 
bd18e87
0d04150
 
8020398
 
bd18e87
 
 
 
 
8020398
 
 
 
0d04150
8020398
 
 
 
 
 
6ec8160
8020398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd18e87
 
 
8020398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d04150
8020398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669715f
 
8c17f89
 
0d04150
8c17f89
669715f
8c17f89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import sys
import os
from pathlib import Path
import gc

# Add the StableCascade and CSD directories to the Python path
app_dir = Path(__file__).parent
sys.path.extend([
    str(app_dir),
    str(app_dir / "third_party" / "StableCascade"),
    str(app_dir / "third_party" / "CSD")
])

import yaml
import torch
from tqdm import tqdm
from accelerate.utils import set_module_tensor_to_device
import torch.nn.functional as F
import torchvision.transforms as T
from lang_sam import LangSAM
from inference.utils import *
from core.utils import load_or_fail
from train import WurstCoreC, WurstCoreB
from gdf_rbm import RBM
from stage_c_rbm import StageCRBM
from utils import WurstCoreCRBM
from gdf.schedulers import CosineSchedule
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
from gdf.targets import EpsilonTarget
import PIL

# Device configuration
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)

# Flag for low VRAM usage
low_vram = True

# Function definition for low VRAM usage
if low_vram:
    def models_to(model, device="cpu", excepts=None):
        """
        Change the device of nn.Modules within a class, skipping specified attributes.
        """
        for attr_name in dir(model):
            if attr_name.startswith('__') and attr_name.endswith('__'):
                continue  # skip special attributes

            attr_value = getattr(model, attr_name, None)

            if isinstance(attr_value, torch.nn.Module):
                if excepts and attr_name in excepts:
                    print(f"Except '{attr_name}'")
                    continue
                print(f"Change device of '{attr_name}' to {device}")
                attr_value.to(device)
        
        torch.cuda.empty_cache()

# Stage C model configuration
config_file = 'third_party/StableCascade/configs/inference/stage_c_3b.yaml'
with open(config_file, "r", encoding="utf-8") as file:
    loaded_config = yaml.safe_load(file)

core = WurstCoreCRBM(config_dict=loaded_config, device=device, training=False)

# Stage B model configuration
config_file_b = 'third_party/StableCascade/configs/inference/stage_b_3b.yaml'
with open(config_file_b, "r", encoding="utf-8") as file:
    config_file_b = yaml.safe_load(file)
    
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)

# Setup extras and models for Stage C
extras = core.setup_extras_pre()

gdf_rbm = RBM(
    schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
    input_scaler=VPScaler(), target=EpsilonTarget(),
    noise_cond=CosineTNoiseCond(),
    loss_weight=AdaptiveLossWeight(),
)

sampling_configs = {
    "cfg": 5,
    "sampler": DDPMSampler(gdf_rbm),
    "shift": 1,
    "timesteps": 20
}

extras = core.Extras(
    gdf=gdf_rbm,
    sampling_configs=sampling_configs,
    transforms=extras.transforms,
    effnet_preprocess=extras.effnet_preprocess,
    clip_preprocess=extras.clip_preprocess
)

models = core.setup_models(extras)
models.generator.eval().requires_grad_(False)

# Setup extras and models for Stage B
extras_b = core_b.setup_extras_pre()
models_b = core_b.setup_models(extras_b, skip_clip=True)
models_b = WurstCoreB.Models(
    **{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
)
models_b.generator.bfloat16().eval().requires_grad_(False)

# Off-load old generator (low VRAM mode)
if low_vram:
    models.generator.to("cpu")
    torch.cuda.empty_cache()

# Load and configure new generator
generator_rbm = StageCRBM()
for param_name, param in load_or_fail(core.config.generator_checkpoint_path).items():
    set_module_tensor_to_device(generator_rbm, param_name, "cpu", value=param)

generator_rbm = generator_rbm.to(getattr(torch, core.config.dtype)).to(device)
generator_rbm = core.load_model(generator_rbm, 'generator')

# Create models_rbm instance
models_rbm = core.Models(
    effnet=models.effnet,
    previewer=models.previewer,
    generator=generator_rbm,
    generator_ema=models.generator_ema,
    tokenizer=models.tokenizer,
    text_model=models.text_model,
    image_model=models.image_model
)
models_rbm.generator.eval().requires_grad_(False)

def reset_inference_state():
    global models_rbm, models_b, extras, extras_b, device
    
    # Reset sampling configurations
    extras.sampling_configs['cfg'] = 5
    extras.sampling_configs['shift'] = 1
    extras.sampling_configs['timesteps'] = 20
    extras.sampling_configs['t_start'] = 1.0

    extras_b.sampling_configs['cfg'] = 1.1
    extras_b.sampling_configs['shift'] = 1
    extras_b.sampling_configs['timesteps'] = 10
    extras_b.sampling_configs['t_start'] = 1.0

    # Move models to the correct device
    if low_vram:
        models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
        models_b.generator.to("cpu")
    else:
        models_to(models_rbm, device=device)
        models_b.generator.to(device)

    # Ensure effnet is on the correct device
    models_rbm.effnet.to(device)

    # Clear CUDA cache
    torch.cuda.empty_cache()
    gc.collect()

def infer(style_description, ref_style_file, caption):
    try:
        height=1024
        width=1024
        batch_size=1
        output_file='output.png'
        
        stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)

        extras.sampling_configs['cfg'] = 4
        extras.sampling_configs['shift'] = 2
        extras.sampling_configs['timesteps'] = 20
        extras.sampling_configs['t_start'] = 1.0

        extras_b.sampling_configs['cfg'] = 1.1
        extras_b.sampling_configs['shift'] = 1
        extras_b.sampling_configs['timesteps'] = 10
        extras_b.sampling_configs['t_start'] = 1.0

        ref_style = resize_image(PIL.Image.open(ref_style_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)

        batch = {'captions': [caption] * batch_size}
        batch['style'] = ref_style

        # Ensure effnet is on the correct device
        models_rbm.effnet.to(device)
        x0_style_forward = models_rbm.effnet(extras.effnet_preprocess(ref_style))

        conditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=False, eval_image_embeds=True, eval_style=True, eval_csd=False) 
        unconditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)    
        conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
        unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)

        if low_vram:
            # The sampling process uses more vram, so we offload everything except two modules to the cpu.
            models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])

        # Stage C reverse process.
        sampling_c = extras.gdf.sample(
            models_rbm.generator, conditions, stage_c_latent_shape,
            unconditions, device=device,
            **extras.sampling_configs,
            x0_style_forward=x0_style_forward,
            apply_pushforward=False, tau_pushforward=8,
            num_iter=3, eta=0.1, tau=20, eval_csd=True,
            extras=extras, models=models_rbm,
            lam_style=1, lam_txt_alignment=1.0,
            use_ddim_sampler=True,
        )
        for (sampled_c, _, _) in tqdm(sampling_c, total=extras.sampling_configs['timesteps']):
            sampled_c = sampled_c

        # Stage B reverse process.
        with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):                
            conditions_b['effnet'] = sampled_c
            unconditions_b['effnet'] = torch.zeros_like(sampled_c)
            
            sampling_b = extras_b.gdf.sample(
                models_b.generator, conditions_b, stage_b_latent_shape,
                unconditions_b, device=device, **extras_b.sampling_configs,
            )
            for (sampled_b, _, _) in tqdm(sampling_b, total=extras_b.sampling_configs['timesteps']):
                sampled_b = sampled_b
            sampled = models_b.stage_a.decode(sampled_b).float()

        sampled = torch.cat([
            torch.nn.functional.interpolate(ref_style.cpu(), size=(height, width)),
            sampled.cpu(),
        ], dim=0)

        # Remove the batch dimension and keep only the generated image
        sampled = sampled[1]  # This selects the generated image, discarding the reference style image

        # Ensure the tensor is in [C, H, W] format
        if sampled.dim() == 3 and sampled.shape[0] == 3:
            sampled_image = T.ToPILImage()(sampled)  # Convert tensor to PIL image
            sampled_image.save(output_file)  # Save the image as a PNG
        else:
            raise ValueError(f"Expected tensor of shape [3, H, W] but got {sampled.shape}")

        return output_file  # Return the path to the saved image

    finally:
        # Reset the state after inference, regardless of success or failure
        reset_inference_state()

import gradio as gr

gr.Interface(
    fn = infer,
    inputs=[gr.Textbox(label="style description"), gr.Image(label="Ref Style File", type="filepath"), gr.Textbox(label="caption")],
    outputs=[gr.Image()]
).launch()