Spaces:
Running
on
A100
Running
on
A100
Update app.py
Browse files
app.py
CHANGED
@@ -73,7 +73,80 @@ if low_vram:
|
|
73 |
|
74 |
clear_gpu_cache()
|
75 |
|
76 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
def infer(style_description, ref_style_file, caption):
|
79 |
clear_gpu_cache() # Clear cache before inference
|
|
|
73 |
|
74 |
clear_gpu_cache()
|
75 |
|
76 |
+
# Stage C model configuration
|
77 |
+
config_file = 'third_party/StableCascade/configs/inference/stage_c_3b.yaml'
|
78 |
+
with open(config_file, "r", encoding="utf-8") as file:
|
79 |
+
loaded_config = yaml.safe_load(file)
|
80 |
+
|
81 |
+
core = WurstCoreCRBM(config_dict=loaded_config, device=device, training=False)
|
82 |
+
|
83 |
+
# Stage B model configuration
|
84 |
+
config_file_b = 'third_party/StableCascade/configs/inference/stage_b_3b.yaml'
|
85 |
+
with open(config_file_b, "r", encoding="utf-8") as file:
|
86 |
+
config_file_b = yaml.safe_load(file)
|
87 |
+
|
88 |
+
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
|
89 |
+
|
90 |
+
# Setup extras and models for Stage C
|
91 |
+
extras = core.setup_extras_pre()
|
92 |
+
|
93 |
+
gdf_rbm = RBM(
|
94 |
+
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
|
95 |
+
input_scaler=VPScaler(), target=EpsilonTarget(),
|
96 |
+
noise_cond=CosineTNoiseCond(),
|
97 |
+
loss_weight=AdaptiveLossWeight(),
|
98 |
+
)
|
99 |
+
|
100 |
+
sampling_configs = {
|
101 |
+
"cfg": 5,
|
102 |
+
"sampler": DDPMSampler(gdf_rbm),
|
103 |
+
"shift": 1,
|
104 |
+
"timesteps": 20
|
105 |
+
}
|
106 |
+
|
107 |
+
extras = core.Extras(
|
108 |
+
gdf=gdf_rbm,
|
109 |
+
sampling_configs=sampling_configs,
|
110 |
+
transforms=extras.transforms,
|
111 |
+
effnet_preprocess=extras.effnet_preprocess,
|
112 |
+
clip_preprocess=extras.clip_preprocess
|
113 |
+
)
|
114 |
+
|
115 |
+
models = core.setup_models(extras)
|
116 |
+
models.generator.eval().requires_grad_(False)
|
117 |
+
|
118 |
+
# Setup extras and models for Stage B
|
119 |
+
extras_b = core_b.setup_extras_pre()
|
120 |
+
models_b = core_b.setup_models(extras_b, skip_clip=True)
|
121 |
+
models_b = WurstCoreB.Models(
|
122 |
+
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
|
123 |
+
)
|
124 |
+
models_b.generator.bfloat16().eval().requires_grad_(False)
|
125 |
+
|
126 |
+
# Off-load old generator (low VRAM mode)
|
127 |
+
if low_vram:
|
128 |
+
models.generator.to("cpu")
|
129 |
+
clear_gpu_cache()
|
130 |
+
|
131 |
+
# Load and configure new generator
|
132 |
+
generator_rbm = StageCRBM()
|
133 |
+
for param_name, param in load_or_fail(core.config.generator_checkpoint_path).items():
|
134 |
+
set_module_tensor_to_device(generator_rbm, param_name, "cpu", value=param)
|
135 |
+
|
136 |
+
generator_rbm = generator_rbm.to(getattr(torch, core.config.dtype)).to(device)
|
137 |
+
generator_rbm = core.load_model(generator_rbm, 'generator')
|
138 |
+
|
139 |
+
# Create models_rbm instance
|
140 |
+
models_rbm = core.Models(
|
141 |
+
effnet=models.effnet,
|
142 |
+
previewer=models.previewer,
|
143 |
+
generator=generator_rbm,
|
144 |
+
generator_ema=models.generator_ema,
|
145 |
+
tokenizer=models.tokenizer,
|
146 |
+
text_model=models.text_model,
|
147 |
+
image_model=models.image_model
|
148 |
+
)
|
149 |
+
models_rbm.generator.eval().requires_grad_(False)
|
150 |
|
151 |
def infer(style_description, ref_style_file, caption):
|
152 |
clear_gpu_cache() # Clear cache before inference
|