Spaces:
Running
on
A100
Running
on
A100
File size: 9,130 Bytes
efa1353 8020398 efa1353 0639262 c812124 669715f 7d299b1 669715f 39564a4 669715f 7983b33 669715f 0d04150 024ee6a 0d04150 024ee6a 0d04150 7983b33 669715f 0d04150 c24728c 8020398 0d04150 8020398 0d04150 8020398 0d04150 8020398 0d04150 8020398 6ec8160 8020398 0d04150 8020398 669715f 8c17f89 0d04150 8c17f89 669715f 8c17f89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import sys
import os
from pathlib import Path
import gc
# Add the StableCascade and CSD directories to the Python path
app_dir = Path(__file__).parent
sys.path.extend([
str(app_dir),
str(app_dir / "third_party" / "StableCascade"),
str(app_dir / "third_party" / "CSD")
])
import yaml
import torch
from tqdm import tqdm
from accelerate.utils import set_module_tensor_to_device
import torch.nn.functional as F
import torchvision.transforms as T
from lang_sam import LangSAM
from inference.utils import *
from core.utils import load_or_fail
from train import WurstCoreC, WurstCoreB
from gdf_rbm import RBM
from stage_c_rbm import StageCRBM
from utils import WurstCoreCRBM
from gdf.schedulers import CosineSchedule
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
from gdf.targets import EpsilonTarget
# Device configuration
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
# Flag for low VRAM usage
low_vram = True
# Function definition for low VRAM usage
if low_vram:
def models_to(model, device="cpu", excepts=None):
"""
Change the device of nn.Modules within a class, skipping specified attributes.
"""
for attr_name in dir(model):
if attr_name.startswith('__') and attr_name.endswith('__'):
continue # skip special attributes
attr_value = getattr(model, attr_name, None)
if isinstance(attr_value, torch.nn.Module):
if excepts and attr_name in excepts:
print(f"Except '{attr_name}'")
continue
print(f"Change device of '{attr_name}' to {device}")
attr_value.to(device)
torch.cuda.empty_cache()
# Stage C model configuration
config_file = 'third_party/StableCascade/configs/inference/stage_c_3b.yaml'
with open(config_file, "r", encoding="utf-8") as file:
loaded_config = yaml.safe_load(file)
core = WurstCoreCRBM(config_dict=loaded_config, device=device, training=False)
# Stage B model configuration
config_file_b = 'third_party/StableCascade/configs/inference/stage_b_3b.yaml'
with open(config_file_b, "r", encoding="utf-8") as file:
config_file_b = yaml.safe_load(file)
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
# Setup extras and models for Stage C
extras = core.setup_extras_pre()
gdf_rbm = RBM(
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
input_scaler=VPScaler(), target=EpsilonTarget(),
noise_cond=CosineTNoiseCond(),
loss_weight=AdaptiveLossWeight(),
)
sampling_configs = {
"cfg": 5,
"sampler": DDPMSampler(gdf_rbm),
"shift": 1,
"timesteps": 20
}
extras = core.Extras(
gdf=gdf_rbm,
sampling_configs=sampling_configs,
transforms=extras.transforms,
effnet_preprocess=extras.effnet_preprocess,
clip_preprocess=extras.clip_preprocess
)
models = core.setup_models(extras)
models.generator.eval().requires_grad_(False)
# Setup extras and models for Stage B
extras_b = core_b.setup_extras_pre()
models_b = core_b.setup_models(extras_b, skip_clip=True)
models_b = WurstCoreB.Models(
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
)
models_b.generator.bfloat16().eval().requires_grad_(False)
# Off-load old generator (low VRAM mode)
if low_vram:
models.generator.to("cpu")
torch.cuda.empty_cache()
# Load and configure new generator
generator_rbm = StageCRBM()
for param_name, param in load_or_fail(core.config.generator_checkpoint_path).items():
set_module_tensor_to_device(generator_rbm, param_name, "cpu", value=param)
generator_rbm = generator_rbm.to(getattr(torch, core.config.dtype)).to(device)
generator_rbm = core.load_model(generator_rbm, 'generator')
# Create models_rbm instance
models_rbm = core.Models(
effnet=models.effnet,
previewer=models.previewer,
generator=generator_rbm,
generator_ema=models.generator_ema,
tokenizer=models.tokenizer,
text_model=models.text_model,
image_model=models.image_model
)
models_rbm.generator.eval().requires_grad_(False)
def reset_inference_state():
global models_rbm, models_b, extras, extras_b
# Reset sampling configurations
extras.sampling_configs['cfg'] = 5
extras.sampling_configs['shift'] = 1
extras.sampling_configs['timesteps'] = 20
extras.sampling_configs['t_start'] = 1.0
extras_b.sampling_configs['cfg'] = 1.1
extras_b.sampling_configs['shift'] = 1
extras_b.sampling_configs['timesteps'] = 10
extras_b.sampling_configs['t_start'] = 1.0
# Move models back to initial state
if low_vram:
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
models_b.generator.to("cpu")
else:
models_to(models_rbm, device="cuda")
models_b.generator.to("cuda")
# Clear CUDA cache
torch.cuda.empty_cache()
gc.collect()
def infer(style_description, ref_style_file, caption):
try:
height=1024
width=1024
batch_size=1
output_file='output.png'
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
extras.sampling_configs['cfg'] = 4
extras.sampling_configs['shift'] = 2
extras.sampling_configs['timesteps'] = 20
extras.sampling_configs['t_start'] = 1.0
extras_b.sampling_configs['cfg'] = 1.1
extras_b.sampling_configs['shift'] = 1
extras_b.sampling_configs['timesteps'] = 10
extras_b.sampling_configs['t_start'] = 1.0
ref_style = resize_image(PIL.Image.open(ref_style_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
batch = {'captions': [caption] * batch_size}
batch['style'] = ref_style
x0_style_forward = models_rbm.effnet(extras.effnet_preprocess(ref_style.to(device)))
conditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=False, eval_image_embeds=True, eval_style=True, eval_csd=False)
unconditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
if low_vram:
# The sampling process uses more vram, so we offload everything except two modules to the cpu.
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
# Stage C reverse process.
sampling_c = extras.gdf.sample(
models_rbm.generator, conditions, stage_c_latent_shape,
unconditions, device=device,
**extras.sampling_configs,
x0_style_forward=x0_style_forward,
apply_pushforward=False, tau_pushforward=8,
num_iter=3, eta=0.1, tau=20, eval_csd=True,
extras=extras, models=models_rbm,
lam_style=1, lam_txt_alignment=1.0,
use_ddim_sampler=True,
)
for (sampled_c, _, _) in tqdm(sampling_c, total=extras.sampling_configs['timesteps']):
sampled_c = sampled_c
# Stage B reverse process.
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
conditions_b['effnet'] = sampled_c
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
sampling_b = extras_b.gdf.sample(
models_b.generator, conditions_b, stage_b_latent_shape,
unconditions_b, device=device, **extras_b.sampling_configs,
)
for (sampled_b, _, _) in tqdm(sampling_b, total=extras_b.sampling_configs['timesteps']):
sampled_b = sampled_b
sampled = models_b.stage_a.decode(sampled_b).float()
sampled = torch.cat([
torch.nn.functional.interpolate(ref_style.cpu(), size=(height, width)),
sampled.cpu(),
], dim=0)
# Remove the batch dimension and keep only the generated image
sampled = sampled[1] # This selects the generated image, discarding the reference style image
# Ensure the tensor is in [C, H, W] format
if sampled.dim() == 3 and sampled.shape[0] == 3:
sampled_image = T.ToPILImage()(sampled) # Convert tensor to PIL image
sampled_image.save(output_file) # Save the image as a PNG
else:
raise ValueError(f"Expected tensor of shape [3, H, W] but got {sampled.shape}")
return output_file # Return the path to the saved image
finally:
# Reset the state after inference, regardless of success or failure
reset_inference_state()
import gradio as gr
gr.Interface(
fn = infer,
inputs=[gr.Textbox(label="style description"), gr.Image(label="Ref Style File", type="filepath"), gr.Textbox(label="caption")],
outputs=[gr.Image()]
).launch() |