Spaces:
Sleeping
Sleeping
File size: 19,541 Bytes
4cf80d2 bf85231 c6fcf0b 4cf80d2 cabf670 4cf80d2 cabf670 bf85231 cabf670 bf85231 cabf670 45d706c cabf670 bf85231 cabf670 bf85231 cabf670 bf85231 c08c98f bf85231 c08c98f bf85231 cabf670 c08c98f bf85231 c08c98f 45d706c c08c98f bf85231 c08c98f bf85231 cabf670 45d706c bf85231 cabf670 c08c98f 45d706c cabf670 c08c98f bf85231 c08c98f bf85231 c08c98f bf85231 45d706c c08c98f bf85231 45d706c bf85231 c08c98f cabf670 45d706c bf85231 c08c98f bf85231 cabf670 bf85231 cabf670 bf85231 cabf670 bf85231 cabf670 45d706c cabf670 bf85231 45d706c c08c98f bf85231 45d706c bf85231 c08c98f bf85231 c08c98f bf85231 c08c98f bf85231 c08c98f bf85231 c08c98f bf85231 c08c98f bf85231 cabf670 bf85231 cabf670 bf85231 cabf670 bf85231 45d706c bf85231 cabf670 bf85231 45d706c bf85231 cabf670 bf85231 cabf670 bf85231 cabf670 bf85231 cabf670 45d706c bf85231 45d706c c08c98f bf85231 cabf670 bf85231 c08c98f bf85231 cabf670 c08c98f bf85231 cabf670 c08c98f 45d706c cabf670 bf85231 45d706c bf85231 cabf670 bf85231 cabf670 c08c98f bf85231 cabf670 c08c98f bf85231 c08c98f bf85231 45d706c bf85231 c08c98f bf85231 c08c98f bf85231 c08c98f bf85231 c08c98f bf85231 45d706c bf85231 45d706c bf85231 45d706c bf85231 45d706c bf85231 c08c98f cabf670 c08c98f bf85231 cabf670 b494b53 c08c98f bf85231 c08c98f cabf670 bf85231 c08c98f cabf670 c08c98f 45d706c bf85231 c08c98f 45d706c c08c98f 45d706c bf85231 c08c98f 45d706c cabf670 45d706c bf85231 45d706c c08c98f 45d706c bf85231 45d706c bf85231 45d706c c08c98f bf85231 45d706c bf85231 c08c98f bf85231 45d706c c08c98f 45d706c bf85231 c08c98f bf85231 c08c98f 45d706c c08c98f c574085 bf85231 45d706c bf85231 c08c98f 45d706c bf85231 c08c98f 45d706c bf85231 c08c98f 45d706c bf85231 c08c98f 45d706c c08c98f bf85231 c08c98f 45d706c c08c98f bf85231 45d706c c08c98f bf85231 45d706c bf85231 45d706c bf85231 45d706c bf85231 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
import gzip
import os
import pickle
from glob import glob
from time import sleep
import gradio as gr
import numpy as np
import plotly.graph_objects as go
import torch
from PIL import Image, ImageDraw
from plotly.subplots import make_subplots
IMAGE_SIZE = 400
DATASET_LIST = ["imagenet", "oxford_flowers", "ucf101", "caltech101", "dtd", "eurosat"]
GRID_NUM = 14
pkl_root = "./data/out"
preloaded_data = {}
def preload_activation(image_name):
for model in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
image_file = f"{pkl_root}/{model}/{image_name}.pkl.gz"
with gzip.open(image_file, "rb") as f:
preloaded_data[model] = pickle.load(f)
def get_activation_distribution(image_name: str, model_type: str):
activation = get_data(image_name, model_type)[0]
noisy_features_indices = (sae_data_dict["mean_acts"]["imagenet"] > 0.1).nonzero()[0].tolist()
activation[:, noisy_features_indices] = 0
return activation
def get_grid_loc(evt, image):
# Get click coordinates
x, y = evt._data["index"][0], evt._data["index"][1]
cell_width = image.width // GRID_NUM
cell_height = image.height // GRID_NUM
grid_x = x // cell_width
grid_y = y // cell_height
return grid_x, grid_y, cell_width, cell_height
def highlight_grid(evt: gr.EventData, image_name):
image = data_dict[image_name]["image"]
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
highlighted_image = image.copy()
draw = ImageDraw.Draw(highlighted_image)
box = [grid_x * cell_width, grid_y * cell_height, (grid_x + 1) * cell_width, (grid_y + 1) * cell_height]
draw.rectangle(box, outline="red", width=3)
return highlighted_image
def load_image(img_name):
return Image.open(data_dict[img_name]["image_path"]).resize((IMAGE_SIZE, IMAGE_SIZE))
def plot_activations(
all_activation, tile_activations=None, grid_x=None, grid_y=None, top_k=5, colors=("blue", "cyan"), model_name="CLIP"
):
fig = go.Figure()
def _add_scatter_with_annotation(fig, activations, model_name, color, label):
fig.add_trace(
go.Scatter(
x=np.arange(len(activations)),
y=activations,
mode="lines",
name=label,
line=dict(color=color, dash="solid"),
showlegend=True,
)
)
top_neurons = np.argsort(activations)[::-1][:top_k]
for idx in top_neurons:
fig.add_annotation(
x=idx,
y=activations[idx],
text=str(idx),
showarrow=True,
arrowhead=2,
ax=0,
ay=-15,
arrowcolor=color,
opacity=0.7,
)
return fig
label = f"{model_name.split('-')[-0]} Image-level"
fig = _add_scatter_with_annotation(fig, all_activation, model_name, colors[0], label)
if tile_activations is not None:
label = f"{model_name.split('-')[-0]} Tile ({grid_x}, {grid_y})"
fig = _add_scatter_with_annotation(fig, tile_activations, model_name, colors[1], label)
fig.update_layout(
title="Activation Distribution",
xaxis_title="SAE latent index",
yaxis_title="Activation Value",
template="plotly_white",
)
fig.update_layout(legend=dict(orientation="h", yanchor="middle", y=0.5, xanchor="center", x=0.5))
return fig
def get_activations(evt: gr.EventData, selected_image: str, model_name: str, colors):
activation = get_activation_distribution(selected_image, model_name)
all_activation = activation.mean(0)
tile_activations = None
grid_x = None
grid_y = None
if evt is not None:
if evt._data is not None:
image = data_dict[selected_image]["image"]
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
token_idx = grid_y * GRID_NUM + grid_x + 1
tile_activations = activation[token_idx]
fig = plot_activations(
all_activation, tile_activations, grid_x, grid_y, top_k=5, model_name=model_name, colors=colors
)
return fig
def plot_activation_distribution(evt: gr.EventData, selected_image: str, model_name: str):
fig = make_subplots(
rows=2,
cols=1,
shared_xaxes=True,
subplot_titles=["CLIP Activation", f"{model_name} Activation"],
)
fig_clip = get_activations(evt, selected_image, "CLIP", colors=("#00b4d8", "#90e0ef"))
fig_maple = get_activations(evt, selected_image, model_name, colors=("#ff5a5f", "#ffcad4"))
def _attach_fig(fig, sub_fig, row, col, yref):
for trace in sub_fig.data:
fig.add_trace(trace, row=row, col=col)
for annotation in sub_fig.layout.annotations:
annotation.update(yref=yref)
fig.add_annotation(annotation)
return fig
fig = _attach_fig(fig, fig_clip, row=1, col=1, yref="y1")
fig = _attach_fig(fig, fig_maple, row=2, col=1, yref="y2")
fig.update_xaxes(title_text="SAE Latent Index", row=2, col=1)
fig.update_xaxes(title_text="SAE Latent Index", row=1, col=1)
fig.update_yaxes(title_text="Activation Value", row=1, col=1)
fig.update_yaxes(title_text="Activation Value", row=2, col=1)
fig.update_layout(
# height=500,
# title="Activation Distributions",
template="plotly_white",
showlegend=True,
legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5),
margin=dict(l=20, r=20, t=40, b=20),
)
return fig
def get_segmask(selected_image, slider_value, model_type):
image = data_dict[selected_image]["image"]
sae_act = get_data(selected_image, model_type)[0]
temp = sae_act[:, slider_value]
try:
mask = torch.Tensor(temp[1:,].reshape(14, 14)).view(1, 1, 14, 14)
except Exception as e:
print(sae_act.shape, slider_value)
mask = torch.nn.functional.interpolate(mask, (image.height, image.width))[0][0].numpy()
mask = (mask - mask.min()) / (mask.max() - mask.min() + 1e-10)
base_opacity = 30
image_array = np.array(image)[..., :3]
rgba_overlay = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
rgba_overlay[..., :3] = image_array[..., :3]
darkened_image = (image_array[..., :3] * (base_opacity / 255)).astype(np.uint8)
rgba_overlay[mask == 0, :3] = darkened_image[mask == 0]
rgba_overlay[..., 3] = 255 # Fully opaque
return rgba_overlay
def get_top_images(slider_value, toggle_btn):
def _get_images(dataset_path):
top_image_paths = [
os.path.join(dataset_path, "imagenet", f"{slider_value}.jpg"),
os.path.join(dataset_path, "imagenet-sketch", f"{slider_value}.jpg"),
os.path.join(dataset_path, "caltech101", f"{slider_value}.jpg"),
]
top_images = [
Image.open(path) if os.path.exists(path) else Image.new("RGB", (256, 256), (255, 255, 255))
for path in top_image_paths
]
return top_images
if toggle_btn:
top_images = _get_images("./data/top_images_masked")
else:
top_images = _get_images("./data/top_images")
return top_images
def show_activation_heatmap(selected_image, slider_value, model_type, toggle_btn=False):
slider_value = int(slider_value.split("-")[-1])
rgba_overlay = get_segmask(selected_image, slider_value, model_type)
top_images = get_top_images(slider_value, toggle_btn)
act_values = []
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
act_value = sae_data_dict["mean_act_values"][dataset][slider_value, :5]
act_value = [str(round(value, 3)) for value in act_value]
act_value = " | ".join(act_value)
out = f"#### Activation values: {act_value}"
act_values.append(out)
return rgba_overlay, top_images, act_values
def show_activation_heatmap_clip(selected_image, slider_value, toggle_btn):
rgba_overlay, top_images, act_values = show_activation_heatmap(selected_image, slider_value, "CLIP", toggle_btn)
sleep(0.1)
return (rgba_overlay, top_images[0], top_images[1], top_images[2], act_values[0], act_values[1], act_values[2])
def show_activation_heatmap_maple(selected_image, slider_value, model_name):
slider_value = int(slider_value.split("-")[-1])
rgba_overlay = get_segmask(selected_image, slider_value, model_name)
sleep(0.1)
return rgba_overlay
def get_init_radio_options(selected_image, model_name):
clip_neuron_dict = {}
maple_neuron_dict = {}
def _get_top_actvation(selected_image, model_name, neuron_dict, top_k=5):
activations = get_activation_distribution(selected_image, model_name).mean(0)
top_neurons = list(np.argsort(activations)[::-1][:top_k])
for top_neuron in top_neurons:
neuron_dict[top_neuron] = activations[top_neuron]
sorted_dict = dict(sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True))
return sorted_dict
clip_neuron_dict = _get_top_actvation(selected_image, "CLIP", clip_neuron_dict)
maple_neuron_dict = _get_top_actvation(selected_image, model_name, maple_neuron_dict)
radio_choices = get_radio_names(clip_neuron_dict, maple_neuron_dict)
return radio_choices
def get_radio_names(clip_neuron_dict, maple_neuron_dict):
clip_keys = list(clip_neuron_dict.keys())
maple_keys = list(maple_neuron_dict.keys())
common_keys = list(set(clip_keys).intersection(set(maple_keys)))
clip_only_keys = list(set(clip_keys) - (set(maple_keys)))
maple_only_keys = list(set(maple_keys) - (set(clip_keys)))
common_keys.sort(key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True)
clip_only_keys.sort(reverse=True)
maple_only_keys.sort(reverse=True)
out = []
out.extend([f"common-{i}" for i in common_keys[:5]])
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])
return out
def update_radio_options(evt: gr.EventData, selected_image, model_name):
def _sort_and_save_top_k(activations, neuron_dict, top_k=5):
top_neurons = list(np.argsort(activations)[::-1][:top_k])
for top_neuron in top_neurons:
neuron_dict[top_neuron] = activations[top_neuron]
def _get_top_actvation(evt, selected_image, model_name, neuron_dict):
all_activation = get_activation_distribution(selected_image, model_name)
image_activation = all_activation.mean(0)
_sort_and_save_top_k(image_activation, neuron_dict)
if evt is not None:
if evt._data is not None and isinstance(evt._data["index"], list):
image = data_dict[selected_image]["image"]
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
token_idx = grid_y * GRID_NUM + grid_x + 1
tile_activations = all_activation[token_idx]
_sort_and_save_top_k(tile_activations, neuron_dict)
sorted_dict = dict(sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True))
return sorted_dict
clip_neuron_dict = {}
maple_neuron_dict = {}
clip_neuron_dict = _get_top_actvation(evt, selected_image, "CLIP", clip_neuron_dict)
maple_neuron_dict = _get_top_actvation(evt, selected_image, model_name, maple_neuron_dict)
clip_keys = list(clip_neuron_dict.keys())
maple_keys = list(maple_neuron_dict.keys())
common_keys = list(set(clip_keys).intersection(set(maple_keys)))
clip_only_keys = list(set(clip_keys) - (set(maple_keys)))
maple_only_keys = list(set(maple_keys) - (set(clip_keys)))
common_keys.sort(key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True)
clip_only_keys.sort(reverse=True)
maple_only_keys.sort(reverse=True)
out = []
out.extend([f"common-{i}" for i in common_keys[:5]])
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])
radio_choices = gr.Radio(choices=out, label="Top activating SAE latent", value=out[0])
sleep(0.1)
return radio_choices
def update_markdown(option_value):
latent_idx = int(option_value.split("-")[-1])
out_1 = f"## Segmentation mask for the selected SAE latent - {latent_idx}"
out_2 = f"## Top reference images for the selected SAE latent - {latent_idx}"
return out_1, out_2
def get_data(image_name, model_name):
pkl_root = "./data/out"
data_dir = f"{pkl_root}/{model_name}/{image_name}.pkl.gz"
with gzip.open(data_dir, "rb") as f:
data = pickle.load(f)
out = data
return out
def load_all_data(image_root, pkl_root):
image_files = glob(f"{image_root}/*")
data_dict = {}
for image_file in image_files:
image_name = os.path.basename(image_file).split(".")[0]
if image_file not in data_dict:
data_dict[image_name] = {
"image": Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE)),
"image_path": image_file,
}
sae_data_dict = {}
with open("./data/sae_data/mean_acts.pkl", "rb") as f:
data = pickle.load(f)
sae_data_dict["mean_acts"] = data
sae_data_dict["mean_act_values"] = {}
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f:
data = pickle.load(f)
sae_data_dict["mean_act_values"][dataset] = data
return data_dict, sae_data_dict
data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root)
default_image_name = "christmas-imagenet"
with gr.Blocks(
theme=gr.themes.Citrus(),
css="""
.image-row .gr-image { margin: 0 !important; padding: 0 !important; }
.image-row img { width: auto; height: 50px; } /* Set a uniform height for all images */
""",
) as demo:
with gr.Row():
with gr.Column():
# Left View: Image selection and click handling
gr.Markdown("## Select input image and patch on the image")
image_selector = gr.Dropdown(choices=list(data_dict.keys()), value=default_image_name, label="Select Image")
image_display = gr.Image(value=data_dict[default_image_name]["image"], type="pil", interactive=True)
# Update image display when a new image is selected
image_selector.change(
fn=lambda img_name: data_dict[img_name]["image"], inputs=image_selector, outputs=image_display
)
image_display.select(fn=highlight_grid, inputs=[image_selector], outputs=[image_display])
with gr.Column():
gr.Markdown("## SAE latent activations of CLIP and MaPLE")
model_options = [f"MaPLE-{dataset_name}" for dataset_name in DATASET_LIST]
model_selector = gr.Dropdown(
choices=model_options, value=model_options[0], label="Select adapted model (MaPLe)"
)
init_plot = plot_activation_distribution(None, default_image_name, model_options[0])
neuron_plot = gr.Plot(label="Neuron Activation", value=init_plot, show_label=False)
image_selector.change(
fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot
)
image_display.select(
fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot
)
model_selector.change(fn=load_image, inputs=[image_selector], outputs=image_display)
model_selector.change(
fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot
)
with gr.Row():
with gr.Column():
radio_names = get_init_radio_options(default_image_name, model_options[0])
feautre_idx = radio_names[0].split("-")[-1]
markdown_display = gr.Markdown(f"## Segmentation mask for the selected SAE latent - {feautre_idx}")
init_seg, init_tops, init_values = show_activation_heatmap(default_image_name, radio_names[0], "CLIP")
gr.Markdown("### Localize SAE latent activation using CLIP")
seg_mask_display = gr.Image(value=init_seg, type="pil", show_label=False)
init_seg_maple, _, _ = show_activation_heatmap(default_image_name, radio_names[0], model_options[0])
gr.Markdown("### Localize SAE latent activation using MaPLE")
seg_mask_display_maple = gr.Image(value=init_seg_maple, type="pil", show_label=False)
with gr.Column():
gr.Markdown("## Top activating SAE latent index")
radio_choices = gr.Radio(
choices=radio_names, label="Top activating SAE latent", interactive=True, value=radio_names[0]
)
toggle_btn = gr.Checkbox(label="Show segmentation mask", value=False)
markdown_display_2 = gr.Markdown(f"## Top reference images for the selected SAE latent - {feautre_idx}")
gr.Markdown("### ImageNet")
top_image_1 = gr.Image(value=init_tops[0], type="pil", label="ImageNet", show_label=False)
act_value_1 = gr.Markdown(init_values[0])
gr.Markdown("### ImageNet-Sketch")
top_image_2 = gr.Image(value=init_tops[1], type="pil", label="ImageNet-Sketch", show_label=False)
act_value_2 = gr.Markdown(init_values[1])
gr.Markdown("### Caltech101")
top_image_3 = gr.Image(value=init_tops[2], type="pil", label="Caltech101", show_label=False)
act_value_3 = gr.Markdown(init_values[2])
image_display.select(
fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True
)
model_selector.change(
fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True
)
image_selector.select(
fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True
)
radio_choices.change(
fn=update_markdown,
inputs=[radio_choices],
outputs=[markdown_display, markdown_display_2],
queue=True,
)
radio_choices.change(
fn=show_activation_heatmap_clip,
inputs=[image_selector, radio_choices, toggle_btn],
outputs=[seg_mask_display, top_image_1, top_image_2, top_image_3, act_value_1, act_value_2, act_value_3],
queue=True,
)
radio_choices.change(
fn=show_activation_heatmap_maple,
inputs=[image_selector, radio_choices, model_selector],
outputs=[seg_mask_display_maple],
queue=True,
)
# toggle_btn.change(
# fn=get_top_images,
# inputs=[radio_choices, toggle_btn],
# outputs=[top_image_1, top_image_2, top_image_3],
# queue=True,
# )
toggle_btn.change(
fn=show_activation_heatmap_clip,
inputs=[image_selector, radio_choices, toggle_btn],
outputs=[seg_mask_display, top_image_1, top_image_2, top_image_3, act_value_1, act_value_2, act_value_3],
queue=True,
)
# Launch the app
demo.launch() |