File size: 19,541 Bytes
4cf80d2
 
 
 
bf85231
c6fcf0b
4cf80d2
 
cabf670
4cf80d2
 
 
 
 
 
 
cabf670
 
 
 
bf85231
 
 
 
 
cabf670
 
bf85231
 
cabf670
45d706c
cabf670
bf85231
cabf670
 
bf85231
cabf670
 
 
bf85231
c08c98f
 
bf85231
c08c98f
 
 
 
bf85231
 
cabf670
c08c98f
bf85231
c08c98f
 
45d706c
c08c98f
bf85231
c08c98f
 
bf85231
cabf670
45d706c
bf85231
cabf670
c08c98f
45d706c
cabf670
c08c98f
bf85231
c08c98f
 
 
bf85231
 
c08c98f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf85231
 
45d706c
c08c98f
bf85231
45d706c
bf85231
c08c98f
 
 
 
 
cabf670
45d706c
bf85231
c08c98f
 
bf85231
 
cabf670
 
bf85231
cabf670
 
 
bf85231
 
 
 
 
 
cabf670
bf85231
cabf670
45d706c
cabf670
 
 
bf85231
45d706c
c08c98f
 
 
 
 
 
bf85231
45d706c
 
bf85231
c08c98f
 
 
bf85231
c08c98f
 
 
 
bf85231
c08c98f
 
bf85231
c08c98f
 
 
 
 
bf85231
 
c08c98f
 
 
 
 
bf85231
c08c98f
 
bf85231
cabf670
bf85231
 
 
cabf670
bf85231
cabf670
bf85231
45d706c
bf85231
 
 
 
 
 
 
 
 
 
 
 
 
cabf670
 
 
 
 
 
 
 
bf85231
45d706c
bf85231
 
cabf670
bf85231
cabf670
 
 
 
 
 
bf85231
cabf670
bf85231
 
 
 
 
 
 
 
 
 
 
 
 
 
cabf670
 
45d706c
bf85231
45d706c
c08c98f
bf85231
cabf670
bf85231
 
 
c08c98f
 
bf85231
cabf670
c08c98f
 
bf85231
cabf670
c08c98f
 
 
 
45d706c
cabf670
bf85231
 
45d706c
bf85231
cabf670
bf85231
cabf670
c08c98f
bf85231
cabf670
c08c98f
 
bf85231
c08c98f
bf85231
 
 
45d706c
bf85231
 
 
c08c98f
 
 
 
bf85231
c08c98f
 
bf85231
 
 
 
 
 
 
 
c08c98f
 
bf85231
 
 
 
 
 
 
c08c98f
bf85231
 
45d706c
bf85231
 
 
 
 
45d706c
bf85231
 
 
 
 
 
 
 
45d706c
bf85231
 
 
 
 
 
 
 
45d706c
bf85231
 
 
c08c98f
cabf670
c08c98f
 
 
 
 
bf85231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cabf670
b494b53
c08c98f
bf85231
c08c98f
 
 
 
cabf670
bf85231
c08c98f
 
 
cabf670
c08c98f
45d706c
 
bf85231
 
c08c98f
45d706c
c08c98f
45d706c
bf85231
c08c98f
 
 
 
45d706c
cabf670
45d706c
 
bf85231
 
45d706c
c08c98f
 
45d706c
bf85231
45d706c
bf85231
45d706c
c08c98f
 
 
 
bf85231
 
 
45d706c
 
bf85231
c08c98f
bf85231
45d706c
c08c98f
45d706c
bf85231
c08c98f
 
bf85231
c08c98f
45d706c
c08c98f
c574085
bf85231
45d706c
bf85231
c08c98f
45d706c
bf85231
 
c08c98f
45d706c
bf85231
 
c08c98f
45d706c
bf85231
 
c08c98f
45d706c
c08c98f
bf85231
c08c98f
45d706c
c08c98f
bf85231
 
45d706c
c08c98f
bf85231
 
45d706c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf85231
 
45d706c
 
 
 
 
 
 
bf85231
 
 
45d706c
 
bf85231
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import gzip
import os
import pickle
from glob import glob
from time import sleep

import gradio as gr
import numpy as np
import plotly.graph_objects as go
import torch
from PIL import Image, ImageDraw
from plotly.subplots import make_subplots

IMAGE_SIZE = 400
DATASET_LIST = ["imagenet", "oxford_flowers", "ucf101", "caltech101", "dtd", "eurosat"]
GRID_NUM = 14
pkl_root = "./data/out"
preloaded_data = {}


def preload_activation(image_name):
    for model in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
        image_file = f"{pkl_root}/{model}/{image_name}.pkl.gz"
        with gzip.open(image_file, "rb") as f:
            preloaded_data[model] = pickle.load(f)


def get_activation_distribution(image_name: str, model_type: str):
    activation = get_data(image_name, model_type)[0]

    noisy_features_indices = (sae_data_dict["mean_acts"]["imagenet"] > 0.1).nonzero()[0].tolist()
    activation[:, noisy_features_indices] = 0

    return activation


def get_grid_loc(evt, image):
    # Get click coordinates
    x, y = evt._data["index"][0], evt._data["index"][1]

    cell_width = image.width // GRID_NUM
    cell_height = image.height // GRID_NUM

    grid_x = x // cell_width
    grid_y = y // cell_height
    return grid_x, grid_y, cell_width, cell_height


def highlight_grid(evt: gr.EventData, image_name):
    image = data_dict[image_name]["image"]
    grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)

    highlighted_image = image.copy()
    draw = ImageDraw.Draw(highlighted_image)
    box = [grid_x * cell_width, grid_y * cell_height, (grid_x + 1) * cell_width, (grid_y + 1) * cell_height]
    draw.rectangle(box, outline="red", width=3)

    return highlighted_image


def load_image(img_name):
    return Image.open(data_dict[img_name]["image_path"]).resize((IMAGE_SIZE, IMAGE_SIZE))


def plot_activations(
    all_activation, tile_activations=None, grid_x=None, grid_y=None, top_k=5, colors=("blue", "cyan"), model_name="CLIP"
):
    fig = go.Figure()

    def _add_scatter_with_annotation(fig, activations, model_name, color, label):
        fig.add_trace(
            go.Scatter(
                x=np.arange(len(activations)),
                y=activations,
                mode="lines",
                name=label,
                line=dict(color=color, dash="solid"),
                showlegend=True,
            )
        )
        top_neurons = np.argsort(activations)[::-1][:top_k]
        for idx in top_neurons:
            fig.add_annotation(
                x=idx,
                y=activations[idx],
                text=str(idx),
                showarrow=True,
                arrowhead=2,
                ax=0,
                ay=-15,
                arrowcolor=color,
                opacity=0.7,
            )
        return fig

    label = f"{model_name.split('-')[-0]} Image-level"
    fig = _add_scatter_with_annotation(fig, all_activation, model_name, colors[0], label)
    if tile_activations is not None:
        label = f"{model_name.split('-')[-0]} Tile ({grid_x}, {grid_y})"
        fig = _add_scatter_with_annotation(fig, tile_activations, model_name, colors[1], label)

    fig.update_layout(
        title="Activation Distribution",
        xaxis_title="SAE latent index",
        yaxis_title="Activation Value",
        template="plotly_white",
    )
    fig.update_layout(legend=dict(orientation="h", yanchor="middle", y=0.5, xanchor="center", x=0.5))

    return fig


def get_activations(evt: gr.EventData, selected_image: str, model_name: str, colors):
    activation = get_activation_distribution(selected_image, model_name)
    all_activation = activation.mean(0)

    tile_activations = None
    grid_x = None
    grid_y = None

    if evt is not None:
        if evt._data is not None:
            image = data_dict[selected_image]["image"]
            grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
            token_idx = grid_y * GRID_NUM + grid_x + 1
            tile_activations = activation[token_idx]

    fig = plot_activations(
        all_activation, tile_activations, grid_x, grid_y, top_k=5, model_name=model_name, colors=colors
    )
    return fig


def plot_activation_distribution(evt: gr.EventData, selected_image: str, model_name: str):
    fig = make_subplots(
        rows=2,
        cols=1,
        shared_xaxes=True,
        subplot_titles=["CLIP Activation", f"{model_name} Activation"],
    )

    fig_clip = get_activations(evt, selected_image, "CLIP", colors=("#00b4d8", "#90e0ef"))
    fig_maple = get_activations(evt, selected_image, model_name, colors=("#ff5a5f", "#ffcad4"))

    def _attach_fig(fig, sub_fig, row, col, yref):
        for trace in sub_fig.data:
            fig.add_trace(trace, row=row, col=col)

        for annotation in sub_fig.layout.annotations:
            annotation.update(yref=yref)
            fig.add_annotation(annotation)
        return fig

    fig = _attach_fig(fig, fig_clip, row=1, col=1, yref="y1")
    fig = _attach_fig(fig, fig_maple, row=2, col=1, yref="y2")

    fig.update_xaxes(title_text="SAE Latent Index", row=2, col=1)
    fig.update_xaxes(title_text="SAE Latent Index", row=1, col=1)
    fig.update_yaxes(title_text="Activation Value", row=1, col=1)
    fig.update_yaxes(title_text="Activation Value", row=2, col=1)
    fig.update_layout(
        # height=500,
        # title="Activation Distributions",
        template="plotly_white",
        showlegend=True,
        legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5),
        margin=dict(l=20, r=20, t=40, b=20),
    )

    return fig


def get_segmask(selected_image, slider_value, model_type):
    image = data_dict[selected_image]["image"]
    sae_act = get_data(selected_image, model_type)[0]
    temp = sae_act[:, slider_value]
    try:
        mask = torch.Tensor(temp[1:,].reshape(14, 14)).view(1, 1, 14, 14)
    except Exception as e:
        print(sae_act.shape, slider_value)
    mask = torch.nn.functional.interpolate(mask, (image.height, image.width))[0][0].numpy()
    mask = (mask - mask.min()) / (mask.max() - mask.min() + 1e-10)

    base_opacity = 30
    image_array = np.array(image)[..., :3]
    rgba_overlay = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
    rgba_overlay[..., :3] = image_array[..., :3]

    darkened_image = (image_array[..., :3] * (base_opacity / 255)).astype(np.uint8)
    rgba_overlay[mask == 0, :3] = darkened_image[mask == 0]
    rgba_overlay[..., 3] = 255  # Fully opaque

    return rgba_overlay


def get_top_images(slider_value, toggle_btn):
    def _get_images(dataset_path):
        top_image_paths = [
            os.path.join(dataset_path, "imagenet", f"{slider_value}.jpg"),
            os.path.join(dataset_path, "imagenet-sketch", f"{slider_value}.jpg"),
            os.path.join(dataset_path, "caltech101", f"{slider_value}.jpg"),
        ]
        top_images = [
            Image.open(path) if os.path.exists(path) else Image.new("RGB", (256, 256), (255, 255, 255))
            for path in top_image_paths
        ]
        return top_images

    if toggle_btn:
        top_images = _get_images("./data/top_images_masked")
    else:
        top_images = _get_images("./data/top_images")
    return top_images


def show_activation_heatmap(selected_image, slider_value, model_type, toggle_btn=False):
    slider_value = int(slider_value.split("-")[-1])
    rgba_overlay = get_segmask(selected_image, slider_value, model_type)
    top_images = get_top_images(slider_value, toggle_btn)

    act_values = []
    for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
        act_value = sae_data_dict["mean_act_values"][dataset][slider_value, :5]
        act_value = [str(round(value, 3)) for value in act_value]
        act_value = " | ".join(act_value)
        out = f"#### Activation values: {act_value}"
        act_values.append(out)

    return rgba_overlay, top_images, act_values


def show_activation_heatmap_clip(selected_image, slider_value, toggle_btn):
    rgba_overlay, top_images, act_values = show_activation_heatmap(selected_image, slider_value, "CLIP", toggle_btn)
    sleep(0.1)
    return (rgba_overlay, top_images[0], top_images[1], top_images[2], act_values[0], act_values[1], act_values[2])


def show_activation_heatmap_maple(selected_image, slider_value, model_name):
    slider_value = int(slider_value.split("-")[-1])
    rgba_overlay = get_segmask(selected_image, slider_value, model_name)
    sleep(0.1)
    return rgba_overlay


def get_init_radio_options(selected_image, model_name):
    clip_neuron_dict = {}
    maple_neuron_dict = {}

    def _get_top_actvation(selected_image, model_name, neuron_dict, top_k=5):
        activations = get_activation_distribution(selected_image, model_name).mean(0)
        top_neurons = list(np.argsort(activations)[::-1][:top_k])
        for top_neuron in top_neurons:
            neuron_dict[top_neuron] = activations[top_neuron]
        sorted_dict = dict(sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True))
        return sorted_dict

    clip_neuron_dict = _get_top_actvation(selected_image, "CLIP", clip_neuron_dict)
    maple_neuron_dict = _get_top_actvation(selected_image, model_name, maple_neuron_dict)

    radio_choices = get_radio_names(clip_neuron_dict, maple_neuron_dict)

    return radio_choices


def get_radio_names(clip_neuron_dict, maple_neuron_dict):
    clip_keys = list(clip_neuron_dict.keys())
    maple_keys = list(maple_neuron_dict.keys())

    common_keys = list(set(clip_keys).intersection(set(maple_keys)))
    clip_only_keys = list(set(clip_keys) - (set(maple_keys)))
    maple_only_keys = list(set(maple_keys) - (set(clip_keys)))

    common_keys.sort(key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True)
    clip_only_keys.sort(reverse=True)
    maple_only_keys.sort(reverse=True)

    out = []
    out.extend([f"common-{i}" for i in common_keys[:5]])
    out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
    out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])

    return out


def update_radio_options(evt: gr.EventData, selected_image, model_name):
    def _sort_and_save_top_k(activations, neuron_dict, top_k=5):
        top_neurons = list(np.argsort(activations)[::-1][:top_k])
        for top_neuron in top_neurons:
            neuron_dict[top_neuron] = activations[top_neuron]

    def _get_top_actvation(evt, selected_image, model_name, neuron_dict):
        all_activation = get_activation_distribution(selected_image, model_name)
        image_activation = all_activation.mean(0)
        _sort_and_save_top_k(image_activation, neuron_dict)

        if evt is not None:
            if evt._data is not None and isinstance(evt._data["index"], list):
                image = data_dict[selected_image]["image"]
                grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
                token_idx = grid_y * GRID_NUM + grid_x + 1
                tile_activations = all_activation[token_idx]
                _sort_and_save_top_k(tile_activations, neuron_dict)

        sorted_dict = dict(sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True))
        return sorted_dict

    clip_neuron_dict = {}
    maple_neuron_dict = {}
    clip_neuron_dict = _get_top_actvation(evt, selected_image, "CLIP", clip_neuron_dict)
    maple_neuron_dict = _get_top_actvation(evt, selected_image, model_name, maple_neuron_dict)

    clip_keys = list(clip_neuron_dict.keys())
    maple_keys = list(maple_neuron_dict.keys())

    common_keys = list(set(clip_keys).intersection(set(maple_keys)))
    clip_only_keys = list(set(clip_keys) - (set(maple_keys)))
    maple_only_keys = list(set(maple_keys) - (set(clip_keys)))

    common_keys.sort(key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True)
    clip_only_keys.sort(reverse=True)
    maple_only_keys.sort(reverse=True)

    out = []
    out.extend([f"common-{i}" for i in common_keys[:5]])
    out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
    out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])

    radio_choices = gr.Radio(choices=out, label="Top activating SAE latent", value=out[0])
    sleep(0.1)
    return radio_choices


def update_markdown(option_value):
    latent_idx = int(option_value.split("-")[-1])
    out_1 = f"## Segmentation mask for the selected SAE latent - {latent_idx}"
    out_2 = f"## Top reference images for the selected SAE latent - {latent_idx}"
    return out_1, out_2


def get_data(image_name, model_name):
    pkl_root = "./data/out"
    data_dir = f"{pkl_root}/{model_name}/{image_name}.pkl.gz"
    with gzip.open(data_dir, "rb") as f:
        data = pickle.load(f)
        out = data

    return out


def load_all_data(image_root, pkl_root):
    image_files = glob(f"{image_root}/*")
    data_dict = {}
    for image_file in image_files:
        image_name = os.path.basename(image_file).split(".")[0]
        if image_file not in data_dict:
            data_dict[image_name] = {
                "image": Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE)),
                "image_path": image_file,
            }

    sae_data_dict = {}
    with open("./data/sae_data/mean_acts.pkl", "rb") as f:
        data = pickle.load(f)
        sae_data_dict["mean_acts"] = data

    sae_data_dict["mean_act_values"] = {}
    for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
        with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f:
            data = pickle.load(f)
            sae_data_dict["mean_act_values"][dataset] = data

    return data_dict, sae_data_dict


data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root)
default_image_name = "christmas-imagenet"


with gr.Blocks(
    theme=gr.themes.Citrus(),
    css="""
    .image-row .gr-image { margin: 0 !important; padding: 0 !important; }
    .image-row img { width: auto; height: 50px; } /* Set a uniform height for all images */
""",
) as demo:
    with gr.Row():
        with gr.Column():
            # Left View: Image selection and click handling
            gr.Markdown("## Select input image and patch on the image")
            image_selector = gr.Dropdown(choices=list(data_dict.keys()), value=default_image_name, label="Select Image")
            image_display = gr.Image(value=data_dict[default_image_name]["image"], type="pil", interactive=True)

            # Update image display when a new image is selected
            image_selector.change(
                fn=lambda img_name: data_dict[img_name]["image"], inputs=image_selector, outputs=image_display
            )
            image_display.select(fn=highlight_grid, inputs=[image_selector], outputs=[image_display])

        with gr.Column():
            gr.Markdown("## SAE latent activations of CLIP and MaPLE")
            model_options = [f"MaPLE-{dataset_name}" for dataset_name in DATASET_LIST]
            model_selector = gr.Dropdown(
                choices=model_options, value=model_options[0], label="Select adapted model (MaPLe)"
            )
            init_plot = plot_activation_distribution(None, default_image_name, model_options[0])
            neuron_plot = gr.Plot(label="Neuron Activation", value=init_plot, show_label=False)

            image_selector.change(
                fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot
            )
            image_display.select(
                fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot
            )
            model_selector.change(fn=load_image, inputs=[image_selector], outputs=image_display)
            model_selector.change(
                fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot
            )

    with gr.Row():
        with gr.Column():
            radio_names = get_init_radio_options(default_image_name, model_options[0])

            feautre_idx = radio_names[0].split("-")[-1]
            markdown_display = gr.Markdown(f"## Segmentation mask for the selected SAE latent - {feautre_idx}")
            init_seg, init_tops, init_values = show_activation_heatmap(default_image_name, radio_names[0], "CLIP")

            gr.Markdown("### Localize SAE latent activation using CLIP")
            seg_mask_display = gr.Image(value=init_seg, type="pil", show_label=False)
            init_seg_maple, _, _ = show_activation_heatmap(default_image_name, radio_names[0], model_options[0])
            gr.Markdown("### Localize SAE latent activation using MaPLE")
            seg_mask_display_maple = gr.Image(value=init_seg_maple, type="pil", show_label=False)

        with gr.Column():
            gr.Markdown("## Top activating SAE latent index")

            radio_choices = gr.Radio(
                choices=radio_names, label="Top activating SAE latent", interactive=True, value=radio_names[0]
            )
            toggle_btn = gr.Checkbox(label="Show segmentation mask", value=False)

            markdown_display_2 = gr.Markdown(f"## Top reference images for the selected SAE latent - {feautre_idx}")

            gr.Markdown("### ImageNet")
            top_image_1 = gr.Image(value=init_tops[0], type="pil", label="ImageNet", show_label=False)
            act_value_1 = gr.Markdown(init_values[0])

            gr.Markdown("### ImageNet-Sketch")
            top_image_2 = gr.Image(value=init_tops[1], type="pil", label="ImageNet-Sketch", show_label=False)
            act_value_2 = gr.Markdown(init_values[1])

            gr.Markdown("### Caltech101")
            top_image_3 = gr.Image(value=init_tops[2], type="pil", label="Caltech101", show_label=False)
            act_value_3 = gr.Markdown(init_values[2])

            image_display.select(
                fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True
            )

            model_selector.change(
                fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True
            )

            image_selector.select(
                fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True
            )

        radio_choices.change(
            fn=update_markdown,
            inputs=[radio_choices],
            outputs=[markdown_display, markdown_display_2],
            queue=True,
        )

        radio_choices.change(
            fn=show_activation_heatmap_clip,
            inputs=[image_selector, radio_choices, toggle_btn],
            outputs=[seg_mask_display, top_image_1, top_image_2, top_image_3, act_value_1, act_value_2, act_value_3],
            queue=True,
        )

        radio_choices.change(
            fn=show_activation_heatmap_maple,
            inputs=[image_selector, radio_choices, model_selector],
            outputs=[seg_mask_display_maple],
            queue=True,
        )

        # toggle_btn.change(
        #     fn=get_top_images,
        #     inputs=[radio_choices, toggle_btn],
        #     outputs=[top_image_1, top_image_2, top_image_3],
        #     queue=True,
        # )

        toggle_btn.change(
            fn=show_activation_heatmap_clip,
            inputs=[image_selector, radio_choices, toggle_btn],
            outputs=[seg_mask_display, top_image_1, top_image_2, top_image_3, act_value_1, act_value_2, act_value_3],
            queue=True,
        )

    # Launch the app
    demo.launch()