Spaces:
Sleeping
Sleeping
limhyesu98
commited on
Commit
·
4cf80d2
1
Parent(s):
5e15f55
init
Browse files- .gitattributes +21 -0
- README.md +12 -3
- app.py +503 -0
- requirements.txt +3 -0
.gitattributes
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
@@ -33,3 +34,23 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<<<<<<< HEAD
|
2 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
3 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
34 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
35 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
36 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
37 |
+
=======
|
38 |
+
chrismas-imagnet.pkl filter=lfs diff=lfs merge=lfs -text
|
39 |
+
dog-imagenet.pkl filter=lfs diff=lfs merge=lfs -text
|
40 |
+
dog-mmvp.pkl filter=lfs diff=lfs merge=lfs -text
|
41 |
+
golden_gate_bridge.pkl filter=lfs diff=lfs merge=lfs -text
|
42 |
+
hen-imagenet-r.pkl filter=lfs diff=lfs merge=lfs -text
|
43 |
+
hen-imagenet.pkl filter=lfs diff=lfs merge=lfs -text
|
44 |
+
kayaking-ucf.pkl filter=lfs diff=lfs merge=lfs -text
|
45 |
+
owl-imagenet-sketch.pkl filter=lfs diff=lfs merge=lfs -text
|
46 |
+
owl-imagenet.pkl filter=lfs diff=lfs merge=lfs -text
|
47 |
+
paphiopedilum-micranthum.pkl filter=lfs diff=lfs merge=lfs -text
|
48 |
+
phalaenopsis-aphrodite.pkl filter=lfs diff=lfs merge=lfs -text
|
49 |
+
text-1.pkl filter=lfs diff=lfs merge=lfs -text
|
50 |
+
text-2.pkl filter=lfs diff=lfs merge=lfs -text
|
51 |
+
text-3.pkl filter=lfs diff=lfs merge=lfs -text
|
52 |
+
vegetation-land-eurosat.pkl filter=lfs diff=lfs merge=lfs -text
|
53 |
+
data/sae_data/mean_act_values_caltech101.pkl.gz filter=lfs diff=lfs merge=lfs -text
|
54 |
+
data/sae_data/mean_act_values_imagenet-sketch.pkl.gz filter=lfs diff=lfs merge=lfs -text
|
55 |
+
data/sae_data/mean_act_values_imagenet.pkl.gz filter=lfs diff=lfs merge=lfs -text
|
56 |
+
>>>>>>> master
|
README.md
CHANGED
@@ -1,10 +1,19 @@
|
|
1 |
---
|
|
|
2 |
title: Patchsae Demo
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.8.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
1 |
---
|
2 |
+
<<<<<<< HEAD
|
3 |
title: Patchsae Demo
|
4 |
+
emoji: 😻
|
5 |
+
colorFrom: red
|
6 |
+
colorTo: gray
|
7 |
sdk: gradio
|
8 |
sdk_version: 5.8.0
|
9 |
+
=======
|
10 |
+
title: Paper14240
|
11 |
+
emoji: 📈
|
12 |
+
colorFrom: blue
|
13 |
+
colorTo: pink
|
14 |
+
sdk: gradio
|
15 |
+
sdk_version: 5.5.0
|
16 |
+
>>>>>>> master
|
17 |
app_file: app.py
|
18 |
pinned: false
|
19 |
---
|
app.py
ADDED
@@ -0,0 +1,503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gzip
|
2 |
+
import os
|
3 |
+
import pickle
|
4 |
+
from glob import glob
|
5 |
+
from time import sleep
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
import plotly.graph_objects as go
|
10 |
+
import torch
|
11 |
+
from PIL import Image, ImageDraw
|
12 |
+
from plotly.subplots import make_subplots
|
13 |
+
|
14 |
+
IMAGE_SIZE = 400
|
15 |
+
DATASET_LIST = ["imagenet", "oxford_flowers", "ucf101", "caltech101", "dtd", "eurosat"]
|
16 |
+
GRID_NUM = 14
|
17 |
+
pkl_root = "./data/out"
|
18 |
+
preloaded_data = {}
|
19 |
+
|
20 |
+
|
21 |
+
def preload_activation(image_name):
|
22 |
+
for model in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
|
23 |
+
image_file = f"{pkl_root}/{model}/{image_name}.pkl.gz"
|
24 |
+
with gzip.open(image_file, "rb") as f:
|
25 |
+
preloaded_data[model] = pickle.load(f)
|
26 |
+
|
27 |
+
|
28 |
+
def get_activation_distribution(image_name: str, model_type: str):
|
29 |
+
activation = get_data(image_name, model_type)[0]
|
30 |
+
|
31 |
+
noisy_features_indices = (sae_data_dict["mean_acts"]["imagenet"] > 0.1).nonzero()[0].tolist()
|
32 |
+
activation[:, noisy_features_indices] = 0
|
33 |
+
|
34 |
+
return activation
|
35 |
+
|
36 |
+
|
37 |
+
def get_grid_loc(evt, image):
|
38 |
+
# Get click coordinates
|
39 |
+
x, y = evt._data["index"][0], evt._data["index"][1]
|
40 |
+
|
41 |
+
cell_width = image.width // GRID_NUM
|
42 |
+
cell_height = image.height // GRID_NUM
|
43 |
+
|
44 |
+
grid_x = x // cell_width
|
45 |
+
grid_y = y // cell_height
|
46 |
+
return grid_x, grid_y, cell_width, cell_height
|
47 |
+
|
48 |
+
|
49 |
+
def highlight_grid(evt: gr.EventData, image_name):
|
50 |
+
image = data_dict[image_name]["image"]
|
51 |
+
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
|
52 |
+
|
53 |
+
highlighted_image = image.copy()
|
54 |
+
draw = ImageDraw.Draw(highlighted_image)
|
55 |
+
box = [grid_x * cell_width, grid_y * cell_height, (grid_x + 1) * cell_width, (grid_y + 1) * cell_height]
|
56 |
+
draw.rectangle(box, outline="red", width=3)
|
57 |
+
|
58 |
+
return highlighted_image
|
59 |
+
|
60 |
+
|
61 |
+
def load_image(img_name):
|
62 |
+
return Image.open(data_dict[img_name]["image_path"]).resize((IMAGE_SIZE, IMAGE_SIZE))
|
63 |
+
|
64 |
+
|
65 |
+
def plot_activations(
|
66 |
+
all_activation, tile_activations=None, grid_x=None, grid_y=None, top_k=5, colors=("blue", "cyan"), model_name="CLIP"
|
67 |
+
):
|
68 |
+
fig = go.Figure()
|
69 |
+
|
70 |
+
def _add_scatter_with_annotation(fig, activations, model_name, color, label):
|
71 |
+
fig.add_trace(
|
72 |
+
go.Scatter(
|
73 |
+
x=np.arange(len(activations)),
|
74 |
+
y=activations,
|
75 |
+
mode="lines",
|
76 |
+
name=label,
|
77 |
+
line=dict(color=color, dash="solid"),
|
78 |
+
showlegend=True,
|
79 |
+
)
|
80 |
+
)
|
81 |
+
top_neurons = np.argsort(activations)[::-1][:top_k]
|
82 |
+
for idx in top_neurons:
|
83 |
+
fig.add_annotation(
|
84 |
+
x=idx,
|
85 |
+
y=activations[idx],
|
86 |
+
text=str(idx),
|
87 |
+
showarrow=True,
|
88 |
+
arrowhead=2,
|
89 |
+
ax=0,
|
90 |
+
ay=-15,
|
91 |
+
arrowcolor=color,
|
92 |
+
opacity=0.7,
|
93 |
+
)
|
94 |
+
return fig
|
95 |
+
|
96 |
+
label = f"{model_name.split('-')[-0]} Image-level"
|
97 |
+
fig = _add_scatter_with_annotation(fig, all_activation, model_name, colors[0], label)
|
98 |
+
if tile_activations is not None:
|
99 |
+
label = f"{model_name.split('-')[-0]} Tile ({grid_x}, {grid_y})"
|
100 |
+
fig = _add_scatter_with_annotation(fig, tile_activations, model_name, colors[1], label)
|
101 |
+
|
102 |
+
fig.update_layout(
|
103 |
+
title="Activation Distribution",
|
104 |
+
xaxis_title="SAE latent index",
|
105 |
+
yaxis_title="Activation Value",
|
106 |
+
template="plotly_white",
|
107 |
+
)
|
108 |
+
fig.update_layout(legend=dict(orientation="h", yanchor="middle", y=0.5, xanchor="center", x=0.5))
|
109 |
+
|
110 |
+
return fig
|
111 |
+
|
112 |
+
|
113 |
+
def get_activations(evt: gr.EventData, selected_image: str, model_name: str, colors):
|
114 |
+
activation = get_activation_distribution(selected_image, model_name)
|
115 |
+
all_activation = activation.mean(0)
|
116 |
+
|
117 |
+
tile_activations = None
|
118 |
+
grid_x = None
|
119 |
+
grid_y = None
|
120 |
+
|
121 |
+
if evt is not None:
|
122 |
+
if evt._data is not None:
|
123 |
+
image = data_dict[selected_image]["image"]
|
124 |
+
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
|
125 |
+
token_idx = grid_y * GRID_NUM + grid_x + 1
|
126 |
+
tile_activations = activation[token_idx]
|
127 |
+
|
128 |
+
fig = plot_activations(
|
129 |
+
all_activation, tile_activations, grid_x, grid_y, top_k=5, model_name=model_name, colors=colors
|
130 |
+
)
|
131 |
+
return fig
|
132 |
+
|
133 |
+
|
134 |
+
def plot_activation_distribution(evt: gr.EventData, selected_image: str, model_name: str):
|
135 |
+
fig = make_subplots(
|
136 |
+
rows=2,
|
137 |
+
cols=1,
|
138 |
+
shared_xaxes=True,
|
139 |
+
subplot_titles=["CLIP Activation", f"{model_name} Activation"],
|
140 |
+
)
|
141 |
+
|
142 |
+
fig_clip = get_activations(evt, selected_image, "CLIP", colors=("#00b4d8", "#90e0ef"))
|
143 |
+
fig_maple = get_activations(evt, selected_image, model_name, colors=("#ff5a5f", "#ffcad4"))
|
144 |
+
|
145 |
+
def _attach_fig(fig, sub_fig, row, col, yref):
|
146 |
+
for trace in sub_fig.data:
|
147 |
+
fig.add_trace(trace, row=row, col=col)
|
148 |
+
|
149 |
+
for annotation in sub_fig.layout.annotations:
|
150 |
+
annotation.update(yref=yref)
|
151 |
+
fig.add_annotation(annotation)
|
152 |
+
return fig
|
153 |
+
|
154 |
+
fig = _attach_fig(fig, fig_clip, row=1, col=1, yref="y1")
|
155 |
+
fig = _attach_fig(fig, fig_maple, row=2, col=1, yref="y2")
|
156 |
+
|
157 |
+
fig.update_xaxes(title_text="SAE Latent Index", row=2, col=1)
|
158 |
+
fig.update_xaxes(title_text="SAE Latent Index", row=1, col=1)
|
159 |
+
fig.update_yaxes(title_text="Activation Value", row=1, col=1)
|
160 |
+
fig.update_yaxes(title_text="Activation Value", row=2, col=1)
|
161 |
+
fig.update_layout(
|
162 |
+
# height=500,
|
163 |
+
# title="Activation Distributions",
|
164 |
+
template="plotly_white",
|
165 |
+
showlegend=True,
|
166 |
+
legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5),
|
167 |
+
margin=dict(l=20, r=20, t=40, b=20),
|
168 |
+
)
|
169 |
+
|
170 |
+
return fig
|
171 |
+
|
172 |
+
|
173 |
+
def get_segmask(selected_image, slider_value, model_type):
|
174 |
+
image = data_dict[selected_image]["image"]
|
175 |
+
sae_act = get_data(selected_image, model_type)[0]
|
176 |
+
temp = sae_act[:, slider_value]
|
177 |
+
try:
|
178 |
+
mask = torch.Tensor(temp[1:,].reshape(14, 14)).view(1, 1, 14, 14)
|
179 |
+
except Exception as e:
|
180 |
+
print(sae_act.shape, slider_value)
|
181 |
+
mask = torch.nn.functional.interpolate(mask, (image.height, image.width))[0][0].numpy()
|
182 |
+
mask = (mask - mask.min()) / (mask.max() - mask.min() + 1e-10)
|
183 |
+
|
184 |
+
base_opacity = 30
|
185 |
+
image_array = np.array(image)[..., :3]
|
186 |
+
rgba_overlay = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
|
187 |
+
rgba_overlay[..., :3] = image_array[..., :3]
|
188 |
+
|
189 |
+
darkened_image = (image_array[..., :3] * (base_opacity / 255)).astype(np.uint8)
|
190 |
+
rgba_overlay[mask == 0, :3] = darkened_image[mask == 0]
|
191 |
+
rgba_overlay[..., 3] = 255 # Fully opaque
|
192 |
+
|
193 |
+
return rgba_overlay
|
194 |
+
|
195 |
+
|
196 |
+
def get_top_images(slider_value, toggle_btn):
|
197 |
+
def _get_images(dataset_path):
|
198 |
+
top_image_paths = [
|
199 |
+
os.path.join(dataset_path, "imagenet", f"{slider_value}.jpg"),
|
200 |
+
os.path.join(dataset_path, "imagenet-sketch", f"{slider_value}.jpg"),
|
201 |
+
os.path.join(dataset_path, "caltech101", f"{slider_value}.jpg"),
|
202 |
+
]
|
203 |
+
top_images = [
|
204 |
+
Image.open(path) if os.path.exists(path) else Image.new("RGB", (256, 256), (255, 255, 255))
|
205 |
+
for path in top_image_paths
|
206 |
+
]
|
207 |
+
return top_images
|
208 |
+
|
209 |
+
if toggle_btn:
|
210 |
+
top_images = _get_images("./data/top_images_masked")
|
211 |
+
else:
|
212 |
+
top_images = _get_images("./data/top_images")
|
213 |
+
return top_images
|
214 |
+
|
215 |
+
|
216 |
+
def show_activation_heatmap(selected_image, slider_value, model_type, toggle_btn=False):
|
217 |
+
slider_value = int(slider_value.split("-")[-1])
|
218 |
+
rgba_overlay = get_segmask(selected_image, slider_value, model_type)
|
219 |
+
top_images = get_top_images(slider_value, toggle_btn)
|
220 |
+
|
221 |
+
act_values = []
|
222 |
+
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
|
223 |
+
act_value = sae_data_dict["mean_act_values"][dataset][slider_value, :5]
|
224 |
+
act_value = [str(round(value, 3)) for value in act_value]
|
225 |
+
act_value = " | ".join(act_value)
|
226 |
+
out = f"#### Activation values: {act_value}"
|
227 |
+
act_values.append(out)
|
228 |
+
|
229 |
+
return rgba_overlay, top_images, act_values
|
230 |
+
|
231 |
+
|
232 |
+
def show_activation_heatmap_clip(selected_image, slider_value, toggle_btn):
|
233 |
+
rgba_overlay, top_images, act_values = show_activation_heatmap(selected_image, slider_value, "CLIP", toggle_btn)
|
234 |
+
sleep(0.1)
|
235 |
+
return (rgba_overlay, top_images[0], top_images[1], top_images[2], act_values[0], act_values[1], act_values[2])
|
236 |
+
|
237 |
+
|
238 |
+
def show_activation_heatmap_maple(selected_image, slider_value, model_name):
|
239 |
+
slider_value = int(slider_value.split("-")[-1])
|
240 |
+
rgba_overlay = get_segmask(selected_image, slider_value, model_name)
|
241 |
+
sleep(0.1)
|
242 |
+
return rgba_overlay
|
243 |
+
|
244 |
+
|
245 |
+
def get_init_radio_options(selected_image, model_name):
|
246 |
+
clip_neuron_dict = {}
|
247 |
+
maple_neuron_dict = {}
|
248 |
+
|
249 |
+
def _get_top_actvation(selected_image, model_name, neuron_dict, top_k=5):
|
250 |
+
activations = get_activation_distribution(selected_image, model_name).mean(0)
|
251 |
+
top_neurons = list(np.argsort(activations)[::-1][:top_k])
|
252 |
+
for top_neuron in top_neurons:
|
253 |
+
neuron_dict[top_neuron] = activations[top_neuron]
|
254 |
+
sorted_dict = dict(sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True))
|
255 |
+
return sorted_dict
|
256 |
+
|
257 |
+
clip_neuron_dict = _get_top_actvation(selected_image, "CLIP", clip_neuron_dict)
|
258 |
+
maple_neuron_dict = _get_top_actvation(selected_image, model_name, maple_neuron_dict)
|
259 |
+
|
260 |
+
radio_choices = get_radio_names(clip_neuron_dict, maple_neuron_dict)
|
261 |
+
|
262 |
+
return radio_choices
|
263 |
+
|
264 |
+
|
265 |
+
def get_radio_names(clip_neuron_dict, maple_neuron_dict):
|
266 |
+
clip_keys = list(clip_neuron_dict.keys())
|
267 |
+
maple_keys = list(maple_neuron_dict.keys())
|
268 |
+
|
269 |
+
common_keys = list(set(clip_keys).intersection(set(maple_keys)))
|
270 |
+
clip_only_keys = list(set(clip_keys) - (set(maple_keys)))
|
271 |
+
maple_only_keys = list(set(maple_keys) - (set(clip_keys)))
|
272 |
+
|
273 |
+
common_keys.sort(key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True)
|
274 |
+
clip_only_keys.sort(reverse=True)
|
275 |
+
maple_only_keys.sort(reverse=True)
|
276 |
+
|
277 |
+
out = []
|
278 |
+
out.extend([f"common-{i}" for i in common_keys[:5]])
|
279 |
+
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
|
280 |
+
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])
|
281 |
+
|
282 |
+
return out
|
283 |
+
|
284 |
+
|
285 |
+
def update_radio_options(evt: gr.EventData, selected_image, model_name):
|
286 |
+
def _sort_and_save_top_k(activations, neuron_dict, top_k=5):
|
287 |
+
top_neurons = list(np.argsort(activations)[::-1][:top_k])
|
288 |
+
for top_neuron in top_neurons:
|
289 |
+
neuron_dict[top_neuron] = activations[top_neuron]
|
290 |
+
|
291 |
+
def _get_top_actvation(evt, selected_image, model_name, neuron_dict):
|
292 |
+
all_activation = get_activation_distribution(selected_image, model_name)
|
293 |
+
image_activation = all_activation.mean(0)
|
294 |
+
_sort_and_save_top_k(image_activation, neuron_dict)
|
295 |
+
|
296 |
+
if evt is not None:
|
297 |
+
if evt._data is not None and isinstance(evt._data["index"], list):
|
298 |
+
image = data_dict[selected_image]["image"]
|
299 |
+
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
|
300 |
+
token_idx = grid_y * GRID_NUM + grid_x + 1
|
301 |
+
tile_activations = all_activation[token_idx]
|
302 |
+
_sort_and_save_top_k(tile_activations, neuron_dict)
|
303 |
+
|
304 |
+
sorted_dict = dict(sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True))
|
305 |
+
return sorted_dict
|
306 |
+
|
307 |
+
clip_neuron_dict = {}
|
308 |
+
maple_neuron_dict = {}
|
309 |
+
clip_neuron_dict = _get_top_actvation(evt, selected_image, "CLIP", clip_neuron_dict)
|
310 |
+
maple_neuron_dict = _get_top_actvation(evt, selected_image, model_name, maple_neuron_dict)
|
311 |
+
|
312 |
+
clip_keys = list(clip_neuron_dict.keys())
|
313 |
+
maple_keys = list(maple_neuron_dict.keys())
|
314 |
+
|
315 |
+
common_keys = list(set(clip_keys).intersection(set(maple_keys)))
|
316 |
+
clip_only_keys = list(set(clip_keys) - (set(maple_keys)))
|
317 |
+
maple_only_keys = list(set(maple_keys) - (set(clip_keys)))
|
318 |
+
|
319 |
+
common_keys.sort(key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True)
|
320 |
+
clip_only_keys.sort(reverse=True)
|
321 |
+
maple_only_keys.sort(reverse=True)
|
322 |
+
|
323 |
+
out = []
|
324 |
+
out.extend([f"common-{i}" for i in common_keys[:5]])
|
325 |
+
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
|
326 |
+
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])
|
327 |
+
|
328 |
+
radio_choices = gr.Radio(choices=out, label="Top activating SAE latent", value=out[0])
|
329 |
+
sleep(0.1)
|
330 |
+
return radio_choices
|
331 |
+
|
332 |
+
|
333 |
+
def update_markdown(option_value):
|
334 |
+
latent_idx = int(option_value.split("-")[-1])
|
335 |
+
out_1 = f"## Segmentation mask for the selected SAE latent - {latent_idx}"
|
336 |
+
out_2 = f"## Top reference images for the selected SAE latent - {latent_idx}"
|
337 |
+
return out_1, out_2
|
338 |
+
|
339 |
+
|
340 |
+
def get_data(image_name, model_name):
|
341 |
+
pkl_root = "./data/out"
|
342 |
+
data_dir = f"{pkl_root}/{model_name}/{image_name}.pkl.gz"
|
343 |
+
with gzip.open(data_dir, "rb") as f:
|
344 |
+
data = pickle.load(f)
|
345 |
+
out = data
|
346 |
+
|
347 |
+
return out
|
348 |
+
|
349 |
+
|
350 |
+
def load_all_data(image_root, pkl_root):
|
351 |
+
image_files = glob(f"{image_root}/*")
|
352 |
+
data_dict = {}
|
353 |
+
for image_file in image_files:
|
354 |
+
image_name = os.path.basename(image_file).split(".")[0]
|
355 |
+
if image_file not in data_dict:
|
356 |
+
data_dict[image_name] = {
|
357 |
+
"image": Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE)),
|
358 |
+
"image_path": image_file,
|
359 |
+
}
|
360 |
+
|
361 |
+
sae_data_dict = {}
|
362 |
+
with open("./data/sae_data/mean_acts.pkl", "rb") as f:
|
363 |
+
data = pickle.load(f)
|
364 |
+
sae_data_dict["mean_acts"] = data
|
365 |
+
|
366 |
+
sae_data_dict["mean_act_values"] = {}
|
367 |
+
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
|
368 |
+
with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f:
|
369 |
+
data = pickle.load(f)
|
370 |
+
sae_data_dict["mean_act_values"][dataset] = data
|
371 |
+
|
372 |
+
return data_dict, sae_data_dict
|
373 |
+
|
374 |
+
|
375 |
+
data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root)
|
376 |
+
default_image_name = "christmas-imagenet"
|
377 |
+
|
378 |
+
|
379 |
+
with gr.Blocks(
|
380 |
+
theme=gr.themes.Citrus(),
|
381 |
+
css="""
|
382 |
+
.image-row .gr-image { margin: 0 !important; padding: 0 !important; }
|
383 |
+
.image-row img { width: auto; height: 50px; } /* Set a uniform height for all images */
|
384 |
+
""",
|
385 |
+
) as demo:
|
386 |
+
with gr.Row():
|
387 |
+
with gr.Column():
|
388 |
+
# Left View: Image selection and click handling
|
389 |
+
gr.Markdown("## Select input image and patch on the image")
|
390 |
+
image_selector = gr.Dropdown(choices=list(data_dict.keys()), value=default_image_name, label="Select Image")
|
391 |
+
image_display = gr.Image(value=data_dict[default_image_name]["image"], type="pil", interactive=True)
|
392 |
+
|
393 |
+
# Update image display when a new image is selected
|
394 |
+
image_selector.change(
|
395 |
+
fn=lambda img_name: data_dict[img_name]["image"], inputs=image_selector, outputs=image_display
|
396 |
+
)
|
397 |
+
image_display.select(fn=highlight_grid, inputs=[image_selector], outputs=[image_display])
|
398 |
+
|
399 |
+
with gr.Column():
|
400 |
+
gr.Markdown("## SAE latent activations of CLIP and MaPLE")
|
401 |
+
model_options = [f"MaPLE-{dataset_name}" for dataset_name in DATASET_LIST]
|
402 |
+
model_selector = gr.Dropdown(
|
403 |
+
choices=model_options, value=model_options[0], label="Select adapted model (MaPLe)"
|
404 |
+
)
|
405 |
+
init_plot = plot_activation_distribution(None, default_image_name, model_options[0])
|
406 |
+
neuron_plot = gr.Plot(label="Neuron Activation", value=init_plot, show_label=False)
|
407 |
+
|
408 |
+
image_selector.change(
|
409 |
+
fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot
|
410 |
+
)
|
411 |
+
image_display.select(
|
412 |
+
fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot
|
413 |
+
)
|
414 |
+
model_selector.change(fn=load_image, inputs=[image_selector], outputs=image_display)
|
415 |
+
model_selector.change(
|
416 |
+
fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot
|
417 |
+
)
|
418 |
+
|
419 |
+
with gr.Row():
|
420 |
+
with gr.Column():
|
421 |
+
radio_names = get_init_radio_options(default_image_name, model_options[0])
|
422 |
+
|
423 |
+
feautre_idx = radio_names[0].split("-")[-1]
|
424 |
+
markdown_display = gr.Markdown(f"## Segmentation mask for the selected SAE latent - {feautre_idx}")
|
425 |
+
init_seg, init_tops, init_values = show_activation_heatmap(default_image_name, radio_names[0], "CLIP")
|
426 |
+
|
427 |
+
gr.Markdown("### Localize SAE latent activation using CLIP")
|
428 |
+
seg_mask_display = gr.Image(value=init_seg, type="pil", show_label=False)
|
429 |
+
init_seg_maple, _, _ = show_activation_heatmap(default_image_name, radio_names[0], model_options[0])
|
430 |
+
gr.Markdown("### Localize SAE latent activation using MaPLE")
|
431 |
+
seg_mask_display_maple = gr.Image(value=init_seg_maple, type="pil", show_label=False)
|
432 |
+
|
433 |
+
with gr.Column():
|
434 |
+
gr.Markdown("## Top activating SAE latent index")
|
435 |
+
|
436 |
+
radio_choices = gr.Radio(
|
437 |
+
choices=radio_names, label="Top activating SAE latent", interactive=True, value=radio_names[0]
|
438 |
+
)
|
439 |
+
toggle_btn = gr.Checkbox(label="Show segmentation mask", value=False)
|
440 |
+
|
441 |
+
markdown_display_2 = gr.Markdown(f"## Top reference images for the selected SAE latent - {feautre_idx}")
|
442 |
+
|
443 |
+
gr.Markdown("### ImageNet")
|
444 |
+
top_image_1 = gr.Image(value=init_tops[0], type="pil", label="ImageNet", show_label=False)
|
445 |
+
act_value_1 = gr.Markdown(init_values[0])
|
446 |
+
|
447 |
+
gr.Markdown("### ImageNet-Sketch")
|
448 |
+
top_image_2 = gr.Image(value=init_tops[1], type="pil", label="ImageNet-Sketch", show_label=False)
|
449 |
+
act_value_2 = gr.Markdown(init_values[1])
|
450 |
+
|
451 |
+
gr.Markdown("### Caltech101")
|
452 |
+
top_image_3 = gr.Image(value=init_tops[2], type="pil", label="Caltech101", show_label=False)
|
453 |
+
act_value_3 = gr.Markdown(init_values[2])
|
454 |
+
|
455 |
+
image_display.select(
|
456 |
+
fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True
|
457 |
+
)
|
458 |
+
|
459 |
+
model_selector.change(
|
460 |
+
fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True
|
461 |
+
)
|
462 |
+
|
463 |
+
image_selector.select(
|
464 |
+
fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True
|
465 |
+
)
|
466 |
+
|
467 |
+
radio_choices.change(
|
468 |
+
fn=update_markdown,
|
469 |
+
inputs=[radio_choices],
|
470 |
+
outputs=[markdown_display, markdown_display_2],
|
471 |
+
queue=True,
|
472 |
+
)
|
473 |
+
|
474 |
+
radio_choices.change(
|
475 |
+
fn=show_activation_heatmap_clip,
|
476 |
+
inputs=[image_selector, radio_choices, toggle_btn],
|
477 |
+
outputs=[seg_mask_display, top_image_1, top_image_2, top_image_3, act_value_1, act_value_2, act_value_3],
|
478 |
+
queue=True,
|
479 |
+
)
|
480 |
+
|
481 |
+
radio_choices.change(
|
482 |
+
fn=show_activation_heatmap_maple,
|
483 |
+
inputs=[image_selector, radio_choices, model_selector],
|
484 |
+
outputs=[seg_mask_display_maple],
|
485 |
+
queue=True,
|
486 |
+
)
|
487 |
+
|
488 |
+
# toggle_btn.change(
|
489 |
+
# fn=get_top_images,
|
490 |
+
# inputs=[radio_choices, toggle_btn],
|
491 |
+
# outputs=[top_image_1, top_image_2, top_image_3],
|
492 |
+
# queue=True,
|
493 |
+
# )
|
494 |
+
|
495 |
+
toggle_btn.change(
|
496 |
+
fn=show_activation_heatmap_clip,
|
497 |
+
inputs=[image_selector, radio_choices, toggle_btn],
|
498 |
+
outputs=[seg_mask_display, top_image_1, top_image_2, top_image_3, act_value_1, act_value_2, act_value_3],
|
499 |
+
queue=True,
|
500 |
+
)
|
501 |
+
|
502 |
+
# Launch the app
|
503 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
matplotlib
|
3 |
+
plotly
|