Spaces:
Sleeping
Sleeping
perf: improve delay
Browse files
app.py
CHANGED
@@ -2,7 +2,10 @@ import gzip
|
|
2 |
import os
|
3 |
import pickle
|
4 |
from glob import glob
|
5 |
-
from
|
|
|
|
|
|
|
6 |
|
7 |
import gradio as gr
|
8 |
import numpy as np
|
@@ -11,47 +14,259 @@ import torch
|
|
11 |
from PIL import Image, ImageDraw
|
12 |
from plotly.subplots import make_subplots
|
13 |
|
|
|
14 |
IMAGE_SIZE = 400
|
15 |
DATASET_LIST = ["imagenet", "oxford_flowers", "ucf101", "caltech101", "dtd", "eurosat"]
|
16 |
GRID_NUM = 14
|
17 |
pkl_root = "./data/out"
|
|
|
|
|
18 |
preloaded_data = {}
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
noisy_features_indices = (
|
32 |
(sae_data_dict["mean_acts"]["imagenet"] > 0.1).nonzero()[0].tolist()
|
33 |
)
|
34 |
activation[:, noisy_features_indices] = 0
|
35 |
-
|
36 |
return activation
|
37 |
|
38 |
-
|
39 |
def get_grid_loc(evt, image):
|
|
|
40 |
# Get click coordinates
|
41 |
x, y = evt._data["index"][0], evt._data["index"][1]
|
42 |
-
|
43 |
cell_width = image.width // GRID_NUM
|
44 |
cell_height = image.height // GRID_NUM
|
45 |
-
|
46 |
grid_x = x // cell_width
|
47 |
grid_y = y // cell_height
|
48 |
return grid_x, grid_y, cell_width, cell_height
|
49 |
|
50 |
-
|
51 |
-
|
52 |
image = data_dict[image_name]["image"]
|
53 |
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
|
54 |
-
|
55 |
highlighted_image = image.copy()
|
56 |
draw = ImageDraw.Draw(highlighted_image)
|
57 |
box = [
|
@@ -61,16 +276,14 @@ def highlight_grid(evt: gr.EventData, image_name):
|
|
61 |
(grid_y + 1) * cell_height,
|
62 |
]
|
63 |
draw.rectangle(box, outline="red", width=3)
|
64 |
-
|
65 |
return highlighted_image
|
66 |
|
67 |
-
|
68 |
def load_image(img_name):
|
69 |
-
|
70 |
-
|
71 |
-
)
|
72 |
-
|
73 |
|
|
|
74 |
def plot_activations(
|
75 |
all_activation,
|
76 |
tile_activations=None,
|
@@ -80,19 +293,28 @@ def plot_activations(
|
|
80 |
colors=("blue", "cyan"),
|
81 |
model_name="CLIP",
|
82 |
):
|
|
|
83 |
fig = go.Figure()
|
84 |
-
|
85 |
def _add_scatter_with_annotation(fig, activations, model_name, color, label):
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
fig.add_trace(
|
87 |
go.Scatter(
|
88 |
-
x=
|
89 |
-
y=activations,
|
90 |
mode="lines",
|
91 |
name=label,
|
92 |
line=dict(color=color, dash="solid"),
|
93 |
showlegend=True,
|
94 |
)
|
95 |
)
|
|
|
|
|
96 |
top_neurons = np.argsort(activations)[::-1][:top_k]
|
97 |
for idx in top_neurons:
|
98 |
fig.add_annotation(
|
@@ -107,45 +329,46 @@ def plot_activations(
|
|
107 |
opacity=0.7,
|
108 |
)
|
109 |
return fig
|
110 |
-
|
111 |
-
label = f"{model_name.split('-')[-
|
112 |
fig = _add_scatter_with_annotation(
|
113 |
fig, all_activation, model_name, colors[0], label
|
114 |
)
|
|
|
115 |
if tile_activations is not None:
|
116 |
-
label = f"{model_name.split('-')[-
|
117 |
fig = _add_scatter_with_annotation(
|
118 |
fig, tile_activations, model_name, colors[1], label
|
119 |
)
|
120 |
-
|
|
|
121 |
fig.update_layout(
|
122 |
title="Activation Distribution",
|
123 |
xaxis_title="SAE latent index",
|
124 |
yaxis_title="Activation Value",
|
125 |
template="plotly_white",
|
|
|
126 |
)
|
127 |
-
|
128 |
-
legend=dict(orientation="h", yanchor="middle", y=0.5, xanchor="center", x=0.5)
|
129 |
-
)
|
130 |
-
|
131 |
return fig
|
132 |
|
133 |
-
|
134 |
-
|
135 |
activation = get_activation_distribution(selected_image, model_name)
|
136 |
all_activation = activation.mean(0)
|
137 |
-
|
138 |
tile_activations = None
|
139 |
grid_x = None
|
140 |
grid_y = None
|
141 |
-
|
142 |
-
if evt is not None:
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
147 |
tile_activations = activation[token_idx]
|
148 |
-
|
149 |
fig = plot_activations(
|
150 |
all_activation,
|
151 |
tile_activations,
|
@@ -155,124 +378,291 @@ def get_activations(evt: gr.EventData, selected_image: str, model_name: str, col
|
|
155 |
model_name=model_name,
|
156 |
colors=colors,
|
157 |
)
|
|
|
158 |
return fig
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
fig = make_subplots(
|
165 |
rows=2,
|
166 |
cols=1,
|
167 |
shared_xaxes=True,
|
168 |
subplot_titles=["CLIP Activation", f"{model_name} Activation"],
|
169 |
)
|
170 |
-
|
171 |
fig_clip = get_activations(
|
172 |
evt, selected_image, "CLIP", colors=("#00b4d8", "#90e0ef")
|
173 |
)
|
174 |
fig_maple = get_activations(
|
175 |
evt, selected_image, model_name, colors=("#ff5a5f", "#ffcad4")
|
176 |
)
|
177 |
-
|
178 |
def _attach_fig(fig, sub_fig, row, col, yref):
|
179 |
for trace in sub_fig.data:
|
180 |
fig.add_trace(trace, row=row, col=col)
|
181 |
-
|
182 |
for annotation in sub_fig.layout.annotations:
|
183 |
annotation.update(yref=yref)
|
184 |
fig.add_annotation(annotation)
|
185 |
return fig
|
186 |
-
|
187 |
fig = _attach_fig(fig, fig_clip, row=1, col=1, yref="y1")
|
188 |
fig = _attach_fig(fig, fig_maple, row=2, col=1, yref="y2")
|
189 |
-
|
|
|
190 |
fig.update_xaxes(title_text="SAE Latent Index", row=2, col=1)
|
191 |
fig.update_xaxes(title_text="SAE Latent Index", row=1, col=1)
|
192 |
fig.update_yaxes(title_text="Activation Value", row=1, col=1)
|
193 |
fig.update_yaxes(title_text="Activation Value", row=2, col=1)
|
194 |
fig.update_layout(
|
195 |
-
# height=500,
|
196 |
-
# title="Activation Distributions",
|
197 |
template="plotly_white",
|
198 |
showlegend=True,
|
199 |
legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5),
|
200 |
margin=dict(l=20, r=20, t=40, b=20),
|
201 |
)
|
202 |
-
|
203 |
return fig
|
204 |
|
205 |
-
|
|
|
206 |
def get_segmask(selected_image, slider_value, model_type):
|
207 |
-
|
208 |
-
sae_act = get_data(selected_image, model_type)[0]
|
209 |
-
temp = sae_act[:, slider_value]
|
210 |
try:
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
except Exception as e:
|
213 |
-
print(
|
214 |
-
|
215 |
-
|
216 |
-
].numpy()
|
217 |
-
mask = (mask - mask.min()) / (mask.max() - mask.min() + 1e-10)
|
218 |
-
|
219 |
-
base_opacity = 30
|
220 |
-
image_array = np.array(image)[..., :3]
|
221 |
-
rgba_overlay = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
|
222 |
-
rgba_overlay[..., :3] = image_array[..., :3]
|
223 |
-
|
224 |
-
darkened_image = (image_array[..., :3] * (base_opacity / 255)).astype(np.uint8)
|
225 |
-
rgba_overlay[mask == 0, :3] = darkened_image[mask == 0]
|
226 |
-
rgba_overlay[..., 3] = 255 # Fully opaque
|
227 |
-
|
228 |
-
return rgba_overlay
|
229 |
-
|
230 |
|
|
|
|
|
231 |
def get_top_images(slider_value, toggle_btn):
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
def _get_images(dataset_path):
|
233 |
top_image_paths = [
|
234 |
os.path.join(dataset_path, "imagenet", f"{slider_value}.jpg"),
|
235 |
os.path.join(dataset_path, "imagenet-sketch", f"{slider_value}.jpg"),
|
236 |
os.path.join(dataset_path, "caltech101", f"{slider_value}.jpg"),
|
237 |
]
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
return top_images
|
247 |
-
|
248 |
if toggle_btn:
|
249 |
top_images = _get_images("./data/top_images_masked")
|
250 |
else:
|
251 |
top_images = _get_images("./data/top_images")
|
|
|
|
|
|
|
|
|
252 |
return top_images
|
253 |
|
254 |
-
|
255 |
def show_activation_heatmap(selected_image, slider_value, model_type, toggle_btn=False):
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
|
271 |
def show_activation_heatmap_clip(selected_image, slider_value, toggle_btn):
|
|
|
272 |
rgba_overlay, top_images, act_values = show_activation_heatmap(
|
273 |
selected_image, slider_value, "CLIP", toggle_btn
|
274 |
)
|
275 |
-
|
276 |
return (
|
277 |
rgba_overlay,
|
278 |
top_images[0],
|
@@ -283,18 +673,19 @@ def show_activation_heatmap_clip(selected_image, slider_value, toggle_btn):
|
|
283 |
act_values[2],
|
284 |
)
|
285 |
|
286 |
-
|
287 |
def show_activation_heatmap_maple(selected_image, slider_value, model_name):
|
288 |
-
|
289 |
-
|
290 |
-
|
|
|
291 |
return rgba_overlay
|
292 |
|
293 |
-
|
294 |
def get_init_radio_options(selected_image, model_name):
|
|
|
295 |
clip_neuron_dict = {}
|
296 |
maple_neuron_dict = {}
|
297 |
-
|
298 |
def _get_top_actvation(selected_image, model_name, neuron_dict, top_k=5):
|
299 |
activations = get_activation_distribution(selected_image, model_name).mean(0)
|
300 |
top_neurons = list(np.argsort(activations)[::-1][:top_k])
|
@@ -304,127 +695,138 @@ def get_init_radio_options(selected_image, model_name):
|
|
304 |
sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True)
|
305 |
)
|
306 |
return sorted_dict
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
selected_image,
|
311 |
-
|
312 |
-
|
|
|
|
|
|
|
313 |
radio_choices = get_radio_names(clip_neuron_dict, maple_neuron_dict)
|
314 |
-
|
315 |
return radio_choices
|
316 |
|
317 |
-
|
318 |
def get_radio_names(clip_neuron_dict, maple_neuron_dict):
|
|
|
319 |
clip_keys = list(clip_neuron_dict.keys())
|
320 |
maple_keys = list(maple_neuron_dict.keys())
|
321 |
-
|
|
|
322 |
common_keys = list(set(clip_keys).intersection(set(maple_keys)))
|
323 |
-
clip_only_keys = list(set(clip_keys) -
|
324 |
-
maple_only_keys = list(set(maple_keys) -
|
325 |
-
|
|
|
326 |
common_keys.sort(
|
327 |
-
key=lambda x: max(clip_neuron_dict
|
|
|
328 |
)
|
329 |
-
clip_only_keys.sort(reverse=True)
|
330 |
-
maple_only_keys.sort(reverse=True)
|
331 |
-
|
|
|
332 |
out = []
|
333 |
out.extend([f"common-{i}" for i in common_keys[:5]])
|
334 |
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
|
335 |
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])
|
336 |
-
|
337 |
return out
|
338 |
|
339 |
-
|
340 |
-
|
341 |
-
def
|
342 |
-
|
343 |
-
for top_neuron in top_neurons:
|
344 |
-
neuron_dict[top_neuron] = activations[top_neuron]
|
345 |
-
|
346 |
-
def _get_top_actvation(evt, selected_image, model_name, neuron_dict):
|
347 |
all_activation = get_activation_distribution(selected_image, model_name)
|
348 |
image_activation = all_activation.mean(0)
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
tile_activations = all_activation[token_idx]
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
out = []
|
385 |
-
out.extend([f"common-{i}" for i in common_keys[:5]])
|
386 |
-
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
|
387 |
-
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])
|
388 |
-
|
389 |
-
radio_choices = gr.Radio(
|
390 |
-
choices=out, label="Top activating SAE latent", value=out[0]
|
391 |
)
|
392 |
-
|
393 |
-
return
|
394 |
-
|
395 |
|
396 |
def update_markdown(option_value):
|
|
|
397 |
latent_idx = int(option_value.split("-")[-1])
|
398 |
out_1 = f"## Segmentation mask for the selected SAE latent - {latent_idx}"
|
399 |
out_2 = f"## Top reference images for the selected SAE latent - {latent_idx}"
|
400 |
return out_1, out_2
|
401 |
|
402 |
-
|
403 |
-
def get_data(image_name, model_name):
|
404 |
-
pkl_root = "./data/out"
|
405 |
-
data_dir = f"{pkl_root}/{model_name}/{image_name}.pkl.gz"
|
406 |
-
with gzip.open(data_dir, "rb") as f:
|
407 |
-
data = pickle.load(f)
|
408 |
-
out = data
|
409 |
-
|
410 |
-
return out
|
411 |
-
|
412 |
-
|
413 |
def update_all(selected_image, slider_value, toggle_btn, model_name):
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
426 |
markdown_display, markdown_display_2 = update_markdown(slider_value)
|
427 |
-
|
428 |
return (
|
429 |
seg_mask_display,
|
430 |
seg_mask_display_maple,
|
@@ -438,42 +840,17 @@ def update_all(selected_image, slider_value, toggle_btn, model_name):
|
|
438 |
markdown_display_2,
|
439 |
)
|
440 |
|
441 |
-
|
442 |
-
def load_all_data(image_root, pkl_root):
|
443 |
-
image_files = glob(f"{image_root}/*")
|
444 |
-
data_dict = {}
|
445 |
-
for image_file in image_files:
|
446 |
-
image_name = os.path.basename(image_file).split(".")[0]
|
447 |
-
if image_file not in data_dict:
|
448 |
-
data_dict[image_name] = {
|
449 |
-
"image": Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE)),
|
450 |
-
"image_path": image_file,
|
451 |
-
}
|
452 |
-
|
453 |
-
sae_data_dict = {}
|
454 |
-
with open("./data/sae_data/mean_acts.pkl", "rb") as f:
|
455 |
-
data = pickle.load(f)
|
456 |
-
sae_data_dict["mean_acts"] = data
|
457 |
-
|
458 |
-
sae_data_dict["mean_act_values"] = {}
|
459 |
-
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
|
460 |
-
with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f:
|
461 |
-
data = pickle.load(f)
|
462 |
-
sae_data_dict["mean_act_values"][dataset] = data
|
463 |
-
|
464 |
-
return data_dict, sae_data_dict
|
465 |
-
|
466 |
-
|
467 |
data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root)
|
468 |
default_image_name = "christmas-imagenet"
|
469 |
|
470 |
-
|
471 |
with gr.Blocks(
|
472 |
theme=gr.themes.Citrus(),
|
473 |
css="""
|
474 |
.image-row .gr-image { margin: 0 !important; padding: 0 !important; }
|
475 |
.image-row img { width: auto; height: 50px; } /* Set a uniform height for all images */
|
476 |
-
""",
|
477 |
) as demo:
|
478 |
with gr.Row():
|
479 |
with gr.Column():
|
@@ -485,21 +862,36 @@ with gr.Blocks(
|
|
485 |
label="Select Image",
|
486 |
)
|
487 |
image_display = gr.Image(
|
488 |
-
value=
|
489 |
type="pil",
|
490 |
interactive=True,
|
491 |
)
|
492 |
-
|
493 |
-
# Update image display when a new image is selected
|
494 |
image_selector.change(
|
495 |
-
fn=
|
496 |
inputs=image_selector,
|
497 |
outputs=image_display,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
498 |
)
|
|
|
|
|
499 |
image_display.select(
|
500 |
-
fn=highlight_grid,
|
|
|
|
|
501 |
)
|
502 |
-
|
503 |
with gr.Column():
|
504 |
gr.Markdown("## SAE latent activations of CLIP and MaPLE")
|
505 |
model_options = [f"MaPLE-{dataset_name}" for dataset_name in DATASET_LIST]
|
@@ -508,139 +900,108 @@ with gr.Blocks(
|
|
508 |
value=model_options[0],
|
509 |
label="Select adapted model (MaPLe)",
|
510 |
)
|
511 |
-
|
512 |
-
|
513 |
-
)
|
514 |
neuron_plot = gr.Plot(
|
515 |
-
label="Neuron Activation",
|
|
|
516 |
)
|
517 |
-
|
518 |
-
|
519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
inputs=[image_selector, model_selector],
|
521 |
outputs=neuron_plot,
|
522 |
)
|
|
|
|
|
523 |
image_display.select(
|
524 |
-
fn=
|
525 |
-
inputs=[image_selector, model_selector],
|
526 |
-
outputs=neuron_plot,
|
527 |
-
)
|
528 |
-
model_selector.change(
|
529 |
-
fn=load_image, inputs=[image_selector], outputs=image_display
|
530 |
-
)
|
531 |
-
model_selector.change(
|
532 |
-
fn=plot_activation_distribution,
|
533 |
inputs=[image_selector, model_selector],
|
534 |
outputs=neuron_plot,
|
535 |
)
|
536 |
|
537 |
with gr.Row():
|
538 |
with gr.Column():
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
default_image_name, radio_names[0], "CLIP"
|
547 |
-
)
|
548 |
-
|
549 |
gr.Markdown("### Localize SAE latent activation using CLIP")
|
550 |
-
seg_mask_display = gr.Image(
|
551 |
-
|
552 |
-
default_image_name, radio_names[0], model_options[0]
|
553 |
-
)
|
554 |
gr.Markdown("### Localize SAE latent activation using MaPLE")
|
555 |
-
seg_mask_display_maple = gr.Image(
|
556 |
-
|
557 |
-
)
|
558 |
-
|
559 |
with gr.Column():
|
560 |
gr.Markdown("## Top activating SAE latent index")
|
561 |
-
|
|
|
562 |
radio_choices = gr.Radio(
|
563 |
-
choices=radio_names,
|
564 |
label="Top activating SAE latent",
|
565 |
interactive=True,
|
566 |
-
value=radio_names[0],
|
567 |
)
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
|
|
|
|
|
|
|
|
|
|
572 |
)
|
573 |
-
|
|
|
|
|
|
|
|
|
|
|
574 |
gr.Markdown("### ImageNet")
|
575 |
-
top_image_1 = gr.Image(
|
576 |
-
|
577 |
-
|
578 |
-
act_value_1 = gr.Markdown(init_values[0])
|
579 |
-
|
580 |
gr.Markdown("### ImageNet-Sketch")
|
581 |
-
top_image_2 = gr.Image(
|
582 |
-
|
583 |
-
|
584 |
-
label="ImageNet-Sketch",
|
585 |
-
show_label=False,
|
586 |
-
)
|
587 |
-
act_value_2 = gr.Markdown(init_values[1])
|
588 |
-
|
589 |
gr.Markdown("### Caltech101")
|
590 |
-
top_image_3 = gr.Image(
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
image_display.select(
|
596 |
fn=update_radio_options,
|
597 |
inputs=[image_selector, model_selector],
|
598 |
-
outputs=
|
599 |
)
|
600 |
-
|
|
|
601 |
model_selector.change(
|
602 |
fn=update_radio_options,
|
603 |
inputs=[image_selector, model_selector],
|
604 |
-
outputs=
|
605 |
)
|
606 |
-
|
607 |
-
|
|
|
608 |
fn=update_radio_options,
|
609 |
inputs=[image_selector, model_selector],
|
610 |
-
outputs=
|
611 |
)
|
612 |
-
|
613 |
-
|
614 |
-
fn=update_all,
|
615 |
-
inputs=[image_selector, radio_choices, toggle_btn, model_selector],
|
616 |
-
outputs=[
|
617 |
-
seg_mask_display,
|
618 |
-
seg_mask_display_maple,
|
619 |
-
top_image_1,
|
620 |
-
top_image_2,
|
621 |
-
top_image_3,
|
622 |
-
act_value_1,
|
623 |
-
act_value_2,
|
624 |
-
act_value_3,
|
625 |
-
markdown_display,
|
626 |
-
markdown_display_2,
|
627 |
-
],
|
628 |
-
)
|
629 |
-
|
630 |
-
toggle_btn.change(
|
631 |
-
fn=show_activation_heatmap_clip,
|
632 |
-
inputs=[image_selector, radio_choices, toggle_btn],
|
633 |
-
outputs=[
|
634 |
-
seg_mask_display,
|
635 |
-
top_image_1,
|
636 |
-
top_image_2,
|
637 |
-
top_image_3,
|
638 |
-
act_value_1,
|
639 |
-
act_value_2,
|
640 |
-
act_value_3,
|
641 |
-
],
|
642 |
-
)
|
643 |
-
|
644 |
-
# Launch the app
|
645 |
-
# demo.queue()
|
646 |
-
demo.launch()
|
|
|
2 |
import os
|
3 |
import pickle
|
4 |
from glob import glob
|
5 |
+
from functools import lru_cache
|
6 |
+
import concurrent.futures
|
7 |
+
import threading
|
8 |
+
import time
|
9 |
|
10 |
import gradio as gr
|
11 |
import numpy as np
|
|
|
14 |
from PIL import Image, ImageDraw
|
15 |
from plotly.subplots import make_subplots
|
16 |
|
17 |
+
# Constants
|
18 |
IMAGE_SIZE = 400
|
19 |
DATASET_LIST = ["imagenet", "oxford_flowers", "ucf101", "caltech101", "dtd", "eurosat"]
|
20 |
GRID_NUM = 14
|
21 |
pkl_root = "./data/out"
|
22 |
+
|
23 |
+
# Global cache for preloaded data
|
24 |
preloaded_data = {}
|
25 |
+
data_dict = {}
|
26 |
+
sae_data_dict = {}
|
27 |
+
activation_cache = {}
|
28 |
+
segmask_cache = {}
|
29 |
+
top_images_cache = {}
|
30 |
|
31 |
+
# Thread lock for thread-safe operations
|
32 |
+
data_lock = threading.Lock()
|
33 |
|
34 |
+
# Load data more efficiently
|
35 |
+
def load_all_data(image_root, pkl_root):
|
36 |
+
"""Load all necessary data with optimized caching"""
|
37 |
+
# Load image data
|
38 |
+
image_files = glob(f"{image_root}/*")
|
39 |
+
data_dict = {}
|
40 |
+
|
41 |
+
# Use thread pool for parallel image loading
|
42 |
+
def load_image_data(image_file):
|
43 |
+
image_name = os.path.basename(image_file).split(".")[0]
|
44 |
+
# Only load thumbnail for initial display, load full image on demand
|
45 |
+
thumbnail = Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE))
|
46 |
+
return image_name, {
|
47 |
+
"image": thumbnail,
|
48 |
+
"image_path": image_file,
|
49 |
+
}
|
50 |
+
|
51 |
+
# Load images in parallel
|
52 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
|
53 |
+
results = executor.map(load_image_data, image_files)
|
54 |
+
for image_name, data in results:
|
55 |
+
data_dict[image_name] = data
|
56 |
+
|
57 |
+
# Load SAE data with minimal processing
|
58 |
+
sae_data_dict = {}
|
59 |
+
|
60 |
+
# Load mean acts only once
|
61 |
+
with open("./data/sae_data/mean_acts.pkl", "rb") as f:
|
62 |
+
sae_data_dict["mean_acts"] = pickle.load(f)
|
63 |
+
|
64 |
+
# Update all components when radio selection changes
|
65 |
+
radio_choices.change(
|
66 |
+
fn=update_all,
|
67 |
+
inputs=[image_selector, radio_choices, toggle_btn, model_selector],
|
68 |
+
outputs=[
|
69 |
+
seg_mask_display,
|
70 |
+
seg_mask_display_maple,
|
71 |
+
top_image_1,
|
72 |
+
top_image_2,
|
73 |
+
top_image_3,
|
74 |
+
act_value_1,
|
75 |
+
act_value_2,
|
76 |
+
act_value_3,
|
77 |
+
markdown_display,
|
78 |
+
markdown_display_2,
|
79 |
+
],
|
80 |
+
_js="""
|
81 |
+
function(img, radio, toggle, model) {
|
82 |
+
// Add a small delay to prevent rapid UI updates
|
83 |
+
clearTimeout(window._radioTimeout);
|
84 |
+
return new Promise((resolve) => {
|
85 |
+
window._radioTimeout = setTimeout(() => {
|
86 |
+
resolve([img, radio, toggle, model]);
|
87 |
+
}, 100);
|
88 |
+
});
|
89 |
+
}
|
90 |
+
"""
|
91 |
+
)
|
92 |
+
|
93 |
+
# Update components when toggle button changes
|
94 |
+
toggle_btn.change(
|
95 |
+
fn=show_activation_heatmap_clip,
|
96 |
+
inputs=[image_selector, radio_choices, toggle_btn],
|
97 |
+
outputs=[
|
98 |
+
seg_mask_display,
|
99 |
+
top_image_1,
|
100 |
+
top_image_2,
|
101 |
+
top_image_3,
|
102 |
+
act_value_1,
|
103 |
+
act_value_2,
|
104 |
+
act_value_3,
|
105 |
+
],
|
106 |
+
_js="""
|
107 |
+
function(img, radio, toggle) {
|
108 |
+
// Add a small delay to prevent rapid UI updates
|
109 |
+
clearTimeout(window._toggleTimeout);
|
110 |
+
return new Promise((resolve) => {
|
111 |
+
window._toggleTimeout = setTimeout(() => {
|
112 |
+
resolve([img, radio, toggle]);
|
113 |
+
}, 100);
|
114 |
+
});
|
115 |
+
}
|
116 |
+
"""
|
117 |
+
)
|
118 |
|
119 |
+
# Initialize UI with default values
|
120 |
+
default_options = get_init_radio_options(default_image_name, model_options[0])
|
121 |
+
if default_options:
|
122 |
+
default_option = default_options[0]
|
123 |
+
|
124 |
+
# Set initial values to avoid blank UI at start
|
125 |
+
gr.on(
|
126 |
+
gr.Blocks.load,
|
127 |
+
fn=lambda: update_all(
|
128 |
+
default_image_name,
|
129 |
+
default_option,
|
130 |
+
False,
|
131 |
+
model_options[0]
|
132 |
+
),
|
133 |
+
outputs=[
|
134 |
+
seg_mask_display,
|
135 |
+
seg_mask_display_maple,
|
136 |
+
top_image_1,
|
137 |
+
top_image_2,
|
138 |
+
top_image_3,
|
139 |
+
act_value_1,
|
140 |
+
act_value_2,
|
141 |
+
act_value_3,
|
142 |
+
markdown_display,
|
143 |
+
markdown_display_2,
|
144 |
+
],
|
145 |
+
)
|
146 |
|
147 |
+
# Add a status indicator to show processing state
|
148 |
+
status_indicator = gr.Markdown("Status: Ready")
|
149 |
+
|
150 |
+
# Add a refresh button to manually reload data if needed
|
151 |
+
refresh_btn = gr.Button("Refresh Data")
|
152 |
+
|
153 |
+
def reload_data():
|
154 |
+
global data_dict, sae_data_dict
|
155 |
+
|
156 |
+
# Update status
|
157 |
+
yield "Status: Reloading data..."
|
158 |
+
|
159 |
+
# Reload data
|
160 |
+
try:
|
161 |
+
data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root)
|
162 |
+
yield "Status: Data reloaded successfully!"
|
163 |
+
except Exception as e:
|
164 |
+
yield f"Status: Error reloading data - {str(e)}"
|
165 |
+
|
166 |
+
refresh_btn.click(
|
167 |
+
fn=reload_data,
|
168 |
+
inputs=[],
|
169 |
+
outputs=[status_indicator],
|
170 |
+
queue=False
|
171 |
+
)
|
172 |
+
|
173 |
+
# Launch app with optimized settings
|
174 |
+
demo.queue(concurrency_count=3, max_size=10) # Balanced concurrency for better performance
|
175 |
+
|
176 |
+
# Add startup message
|
177 |
+
print("Starting visualization application...")
|
178 |
+
print(f"Loaded {len(data_dict)} images and {len(sae_data_dict)} datasets")
|
179 |
+
|
180 |
+
# Launch with proper error handling
|
181 |
+
demo.launch(
|
182 |
+
share=False, # Don't share publicly
|
183 |
+
debug=False, # Disable debug mode for production
|
184 |
+
show_error=True, # Show errors for debugging
|
185 |
+
quiet=False, # Show startup messages
|
186 |
+
favicon_path=None, # Default favicon
|
187 |
+
server_port=None, # Use default port
|
188 |
+
server_name=None, # Bind to all interfaces
|
189 |
+
height=None, # Use default height
|
190 |
+
width=None, # Use default width
|
191 |
+
enable_queue=True, # Enable queue for better performance
|
192 |
+
) dictionary for dataset values
|
193 |
+
sae_data_dict["mean_act_values"] = {}
|
194 |
+
|
195 |
+
# Load dataset values in parallel
|
196 |
+
def load_dataset_values(dataset):
|
197 |
+
with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f:
|
198 |
+
return dataset, pickle.load(f)
|
199 |
+
|
200 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
|
201 |
+
futures = [
|
202 |
+
executor.submit(load_dataset_values, dataset)
|
203 |
+
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]
|
204 |
+
]
|
205 |
+
for future in concurrent.futures.as_completed(futures):
|
206 |
+
dataset, data = future.result()
|
207 |
+
sae_data_dict["mean_act_values"][dataset] = data
|
208 |
+
|
209 |
+
return data_dict, sae_data_dict
|
210 |
|
211 |
+
# Cache activation data with LRU cache
|
212 |
+
@lru_cache(maxsize=32)
|
213 |
+
def preload_activation(image_name, model_name):
|
214 |
+
"""Preload and cache activation data for a specific image and model"""
|
215 |
+
image_file = f"{pkl_root}/{model_name}/{image_name}.pkl.gz"
|
216 |
+
|
217 |
+
try:
|
218 |
+
with gzip.open(image_file, "rb") as f:
|
219 |
+
return pickle.load(f)
|
220 |
+
except Exception as e:
|
221 |
+
print(f"Error loading {image_file}: {e}")
|
222 |
+
return None
|
223 |
+
|
224 |
+
# Get activation with caching
|
225 |
+
def get_data(image_name, model_type):
|
226 |
+
"""Get activation data with caching for better performance"""
|
227 |
+
cache_key = f"{image_name}_{model_type}"
|
228 |
+
|
229 |
+
with data_lock:
|
230 |
+
if cache_key not in activation_cache:
|
231 |
+
activation_cache[cache_key] = preload_activation(image_name, model_type)
|
232 |
+
|
233 |
+
return activation_cache[cache_key]
|
234 |
+
|
235 |
+
def get_activation_distribution(image_name, model_type):
|
236 |
+
"""Get activation distribution with noise filtering"""
|
237 |
+
activation = get_data(image_name, model_type)
|
238 |
+
|
239 |
+
if activation is None:
|
240 |
+
# Return empty tensor if data loading failed
|
241 |
+
return torch.zeros((GRID_NUM * GRID_NUM + 1, 1000))
|
242 |
+
|
243 |
+
activation = activation[0]
|
244 |
+
|
245 |
+
# Filter out noisy features
|
246 |
noisy_features_indices = (
|
247 |
(sae_data_dict["mean_acts"]["imagenet"] > 0.1).nonzero()[0].tolist()
|
248 |
)
|
249 |
activation[:, noisy_features_indices] = 0
|
250 |
+
|
251 |
return activation
|
252 |
|
|
|
253 |
def get_grid_loc(evt, image):
|
254 |
+
"""Get grid location from click event"""
|
255 |
# Get click coordinates
|
256 |
x, y = evt._data["index"][0], evt._data["index"][1]
|
257 |
+
|
258 |
cell_width = image.width // GRID_NUM
|
259 |
cell_height = image.height // GRID_NUM
|
260 |
+
|
261 |
grid_x = x // cell_width
|
262 |
grid_y = y // cell_height
|
263 |
return grid_x, grid_y, cell_width, cell_height
|
264 |
|
265 |
+
def highlight_grid(evt, image_name):
|
266 |
+
"""Highlight grid cell on click"""
|
267 |
image = data_dict[image_name]["image"]
|
268 |
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
|
269 |
+
|
270 |
highlighted_image = image.copy()
|
271 |
draw = ImageDraw.Draw(highlighted_image)
|
272 |
box = [
|
|
|
276 |
(grid_y + 1) * cell_height,
|
277 |
]
|
278 |
draw.rectangle(box, outline="red", width=3)
|
279 |
+
|
280 |
return highlighted_image
|
281 |
|
|
|
282 |
def load_image(img_name):
|
283 |
+
"""Load image by name"""
|
284 |
+
return data_dict[img_name]["image"]
|
|
|
|
|
285 |
|
286 |
+
# Optimized plotting with less annotations
|
287 |
def plot_activations(
|
288 |
all_activation,
|
289 |
tile_activations=None,
|
|
|
293 |
colors=("blue", "cyan"),
|
294 |
model_name="CLIP",
|
295 |
):
|
296 |
+
"""Plot activations with optimized rendering"""
|
297 |
fig = go.Figure()
|
298 |
+
|
299 |
def _add_scatter_with_annotation(fig, activations, model_name, color, label):
|
300 |
+
# Only plot non-zero values to reduce points
|
301 |
+
non_zero_indices = np.where(np.abs(activations) > 1e-5)[0]
|
302 |
+
if len(non_zero_indices) == 0:
|
303 |
+
# If all values are near zero, use full array
|
304 |
+
non_zero_indices = np.arange(len(activations))
|
305 |
+
|
306 |
fig.add_trace(
|
307 |
go.Scatter(
|
308 |
+
x=non_zero_indices,
|
309 |
+
y=activations[non_zero_indices],
|
310 |
mode="lines",
|
311 |
name=label,
|
312 |
line=dict(color=color, dash="solid"),
|
313 |
showlegend=True,
|
314 |
)
|
315 |
)
|
316 |
+
|
317 |
+
# Only annotate the top_k activations
|
318 |
top_neurons = np.argsort(activations)[::-1][:top_k]
|
319 |
for idx in top_neurons:
|
320 |
fig.add_annotation(
|
|
|
329 |
opacity=0.7,
|
330 |
)
|
331 |
return fig
|
332 |
+
|
333 |
+
label = f"{model_name.split('-')[-1]} Image-level"
|
334 |
fig = _add_scatter_with_annotation(
|
335 |
fig, all_activation, model_name, colors[0], label
|
336 |
)
|
337 |
+
|
338 |
if tile_activations is not None:
|
339 |
+
label = f"{model_name.split('-')[-1]} Tile ({grid_x}, {grid_y})"
|
340 |
fig = _add_scatter_with_annotation(
|
341 |
fig, tile_activations, model_name, colors[1], label
|
342 |
)
|
343 |
+
|
344 |
+
# Optimize layout with minimal settings
|
345 |
fig.update_layout(
|
346 |
title="Activation Distribution",
|
347 |
xaxis_title="SAE latent index",
|
348 |
yaxis_title="Activation Value",
|
349 |
template="plotly_white",
|
350 |
+
legend=dict(orientation="h", yanchor="middle", y=0.5, xanchor="center", x=0.5),
|
351 |
)
|
352 |
+
|
|
|
|
|
|
|
353 |
return fig
|
354 |
|
355 |
+
def get_activations(evt, selected_image, model_name, colors):
|
356 |
+
"""Get activations for plotting"""
|
357 |
activation = get_activation_distribution(selected_image, model_name)
|
358 |
all_activation = activation.mean(0)
|
359 |
+
|
360 |
tile_activations = None
|
361 |
grid_x = None
|
362 |
grid_y = None
|
363 |
+
|
364 |
+
if evt is not None and evt._data is not None:
|
365 |
+
image = data_dict[selected_image]["image"]
|
366 |
+
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
|
367 |
+
token_idx = grid_y * GRID_NUM + grid_x + 1
|
368 |
+
# Ensure token_idx is within bounds
|
369 |
+
if token_idx < activation.shape[0]:
|
370 |
tile_activations = activation[token_idx]
|
371 |
+
|
372 |
fig = plot_activations(
|
373 |
all_activation,
|
374 |
tile_activations,
|
|
|
378 |
model_name=model_name,
|
379 |
colors=colors,
|
380 |
)
|
381 |
+
|
382 |
return fig
|
383 |
|
384 |
+
# Cache plot results
|
385 |
+
@lru_cache(maxsize=16)
|
386 |
+
def plot_activation_distribution(evt_data, selected_image, model_name):
|
387 |
+
"""Plot activation distribution with caching"""
|
388 |
+
# Convert event data to hashable format for caching
|
389 |
+
if evt_data is not None:
|
390 |
+
evt = type('obj', (object,), {'_data': evt_data})
|
391 |
+
else:
|
392 |
+
evt = None
|
393 |
+
|
394 |
fig = make_subplots(
|
395 |
rows=2,
|
396 |
cols=1,
|
397 |
shared_xaxes=True,
|
398 |
subplot_titles=["CLIP Activation", f"{model_name} Activation"],
|
399 |
)
|
400 |
+
|
401 |
fig_clip = get_activations(
|
402 |
evt, selected_image, "CLIP", colors=("#00b4d8", "#90e0ef")
|
403 |
)
|
404 |
fig_maple = get_activations(
|
405 |
evt, selected_image, model_name, colors=("#ff5a5f", "#ffcad4")
|
406 |
)
|
407 |
+
|
408 |
def _attach_fig(fig, sub_fig, row, col, yref):
|
409 |
for trace in sub_fig.data:
|
410 |
fig.add_trace(trace, row=row, col=col)
|
411 |
+
|
412 |
for annotation in sub_fig.layout.annotations:
|
413 |
annotation.update(yref=yref)
|
414 |
fig.add_annotation(annotation)
|
415 |
return fig
|
416 |
+
|
417 |
fig = _attach_fig(fig, fig_clip, row=1, col=1, yref="y1")
|
418 |
fig = _attach_fig(fig, fig_maple, row=2, col=1, yref="y2")
|
419 |
+
|
420 |
+
# Optimize layout with minimal settings
|
421 |
fig.update_xaxes(title_text="SAE Latent Index", row=2, col=1)
|
422 |
fig.update_xaxes(title_text="SAE Latent Index", row=1, col=1)
|
423 |
fig.update_yaxes(title_text="Activation Value", row=1, col=1)
|
424 |
fig.update_yaxes(title_text="Activation Value", row=2, col=1)
|
425 |
fig.update_layout(
|
|
|
|
|
426 |
template="plotly_white",
|
427 |
showlegend=True,
|
428 |
legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5),
|
429 |
margin=dict(l=20, r=20, t=40, b=20),
|
430 |
)
|
431 |
+
|
432 |
return fig
|
433 |
|
434 |
+
# Cache segmentation masks
|
435 |
+
@lru_cache(maxsize=32)
|
436 |
def get_segmask(selected_image, slider_value, model_type):
|
437 |
+
"""Generate segmentation mask with caching"""
|
|
|
|
|
438 |
try:
|
439 |
+
# Check if image exists
|
440 |
+
if selected_image not in data_dict:
|
441 |
+
print(f"Image {selected_image} not found in data dictionary")
|
442 |
+
# Return blank mask with IMAGE_SIZE dimensions
|
443 |
+
return np.zeros((IMAGE_SIZE, IMAGE_SIZE, 4), dtype=np.uint8)
|
444 |
+
|
445 |
+
# Use cache if available
|
446 |
+
cache_key = f"{selected_image}_{slider_value}_{model_type}"
|
447 |
+
with data_lock:
|
448 |
+
if cache_key in segmask_cache:
|
449 |
+
return segmask_cache[cache_key]
|
450 |
+
|
451 |
+
# Get image
|
452 |
+
image = data_dict[selected_image]["image"]
|
453 |
+
|
454 |
+
# Get activation data
|
455 |
+
sae_act = get_data(selected_image, model_type)
|
456 |
+
|
457 |
+
if sae_act is None:
|
458 |
+
# Return blank mask if data loading failed
|
459 |
+
return np.zeros((image.height, image.width, 4), dtype=np.uint8)
|
460 |
+
|
461 |
+
# Handle array shape issues
|
462 |
+
try:
|
463 |
+
# Check array shape and dimensions
|
464 |
+
if isinstance(sae_act, tuple) and len(sae_act) > 0:
|
465 |
+
# First element of tuple
|
466 |
+
act_data = sae_act[0]
|
467 |
+
else:
|
468 |
+
# Direct array
|
469 |
+
act_data = sae_act
|
470 |
+
|
471 |
+
# Check if slider_value is within bounds
|
472 |
+
if slider_value >= act_data.shape[1]:
|
473 |
+
print(f"Slider value {slider_value} out of bounds for activation shape {act_data.shape}")
|
474 |
+
return np.zeros((image.height, image.width, 4), dtype=np.uint8)
|
475 |
+
|
476 |
+
# Get activation for specific latent
|
477 |
+
temp = act_data[:, slider_value]
|
478 |
+
|
479 |
+
# Skip first token (CLS token) and reshape to grid
|
480 |
+
if len(temp) > 1: # Ensure we have enough tokens
|
481 |
+
mask = torch.Tensor(temp[1:].reshape(GRID_NUM, GRID_NUM)).view(1, 1, GRID_NUM, GRID_NUM)
|
482 |
+
|
483 |
+
# Upsample to image dimensions
|
484 |
+
mask = torch.nn.functional.interpolate(mask, (image.height, image.width))[0][0].numpy()
|
485 |
+
|
486 |
+
# Normalize mask values between 0 and 1
|
487 |
+
mask_min, mask_max = mask.min(), mask.max()
|
488 |
+
if mask_max > mask_min: # Avoid division by zero
|
489 |
+
mask = (mask - mask_min) / (mask_max - mask_min)
|
490 |
+
else:
|
491 |
+
mask = np.zeros_like(mask)
|
492 |
+
else:
|
493 |
+
# Not enough tokens
|
494 |
+
print(f"Not enough tokens in activation data: {len(temp)}")
|
495 |
+
return np.zeros((image.height, image.width, 4), dtype=np.uint8)
|
496 |
+
|
497 |
+
except Exception as e:
|
498 |
+
print(f"Error processing activation data: {e}")
|
499 |
+
print(f"Shape info - sae_act: {type(sae_act)}, slider_value: {slider_value}")
|
500 |
+
return np.zeros((image.height, image.width, 4), dtype=np.uint8)
|
501 |
+
|
502 |
+
# Create RGBA overlay
|
503 |
+
try:
|
504 |
+
# Set base opacity for darkened areas
|
505 |
+
base_opacity = 30
|
506 |
+
|
507 |
+
# Convert image to numpy array
|
508 |
+
image_array = np.array(image)
|
509 |
+
|
510 |
+
# Handle grayscale images
|
511 |
+
if len(image_array.shape) == 2:
|
512 |
+
# Convert grayscale to RGB
|
513 |
+
image_array = np.stack([image_array] * 3, axis=-1)
|
514 |
+
elif image_array.shape[2] == 4:
|
515 |
+
# Use only RGB channels
|
516 |
+
image_array = image_array[..., :3]
|
517 |
+
|
518 |
+
# Create overlay
|
519 |
+
rgba_overlay = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
|
520 |
+
rgba_overlay[..., :3] = image_array
|
521 |
+
|
522 |
+
# Use vectorized operations for better performance
|
523 |
+
darkened_image = (image_array * (base_opacity / 255)).astype(np.uint8)
|
524 |
+
|
525 |
+
# Create mask for darkened areas
|
526 |
+
mask_threshold = 0.1 # Adjust threshold if needed
|
527 |
+
mask_zero = mask < mask_threshold
|
528 |
+
|
529 |
+
# Apply darkening only to low-activation areas
|
530 |
+
rgba_overlay[mask_zero, :3] = darkened_image[mask_zero]
|
531 |
+
|
532 |
+
# Set alpha channel
|
533 |
+
rgba_overlay[..., 3] = 255 # Fully opaque
|
534 |
+
|
535 |
+
# Cache result for future use
|
536 |
+
with data_lock:
|
537 |
+
segmask_cache[cache_key] = rgba_overlay
|
538 |
+
|
539 |
+
return rgba_overlay
|
540 |
+
|
541 |
+
except Exception as e:
|
542 |
+
print(f"Error creating overlay: {e}")
|
543 |
+
return np.zeros((image.height, image.width, 4), dtype=np.uint8)
|
544 |
+
|
545 |
except Exception as e:
|
546 |
+
print(f"Unexpected error in get_segmask: {e}")
|
547 |
+
# Return a blank image of standard size
|
548 |
+
return np.zeros((IMAGE_SIZE, IMAGE_SIZE, 4), dtype=np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
549 |
|
550 |
+
# Cache top images
|
551 |
+
@lru_cache(maxsize=32)
|
552 |
def get_top_images(slider_value, toggle_btn):
|
553 |
+
"""Get top images with caching"""
|
554 |
+
cache_key = f"{slider_value}_{toggle_btn}"
|
555 |
+
|
556 |
+
if cache_key in top_images_cache:
|
557 |
+
return top_images_cache[cache_key]
|
558 |
+
|
559 |
def _get_images(dataset_path):
|
560 |
top_image_paths = [
|
561 |
os.path.join(dataset_path, "imagenet", f"{slider_value}.jpg"),
|
562 |
os.path.join(dataset_path, "imagenet-sketch", f"{slider_value}.jpg"),
|
563 |
os.path.join(dataset_path, "caltech101", f"{slider_value}.jpg"),
|
564 |
]
|
565 |
+
|
566 |
+
top_images = []
|
567 |
+
for path in top_image_paths:
|
568 |
+
if os.path.exists(path):
|
569 |
+
top_images.append(Image.open(path))
|
570 |
+
else:
|
571 |
+
top_images.append(Image.new("RGB", (256, 256), (255, 255, 255)))
|
572 |
+
|
573 |
return top_images
|
574 |
+
|
575 |
if toggle_btn:
|
576 |
top_images = _get_images("./data/top_images_masked")
|
577 |
else:
|
578 |
top_images = _get_images("./data/top_images")
|
579 |
+
|
580 |
+
# Cache result
|
581 |
+
top_images_cache[cache_key] = top_images
|
582 |
+
|
583 |
return top_images
|
584 |
|
|
|
585 |
def show_activation_heatmap(selected_image, slider_value, model_type, toggle_btn=False):
|
586 |
+
"""Show activation heatmap with optimized processing"""
|
587 |
+
try:
|
588 |
+
# Parse slider value safely
|
589 |
+
if not slider_value:
|
590 |
+
# Fallback to the first option if no slider value
|
591 |
+
radio_options = get_init_radio_options(selected_image, model_type)
|
592 |
+
if not radio_options:
|
593 |
+
# Create placeholder data if no options available
|
594 |
+
return (
|
595 |
+
np.zeros((IMAGE_SIZE, IMAGE_SIZE, 4), dtype=np.uint8),
|
596 |
+
[Image.new("RGB", (256, 256), (255, 255, 255)) for _ in range(3)],
|
597 |
+
["#### Activation values: No data available"] * 3
|
598 |
+
)
|
599 |
+
slider_value = radio_options[0]
|
600 |
+
|
601 |
+
# Extract the integer value
|
602 |
+
try:
|
603 |
+
slider_value_int = int(slider_value.split("-")[-1])
|
604 |
+
except (ValueError, IndexError):
|
605 |
+
print(f"Error parsing slider value: {slider_value}")
|
606 |
+
slider_value_int = 0
|
607 |
+
|
608 |
+
# Process in parallel with thread pool and add timeout
|
609 |
+
results = []
|
610 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
|
611 |
+
# Start both tasks
|
612 |
+
segmask_future = executor.submit(get_segmask, selected_image, slider_value_int, model_type)
|
613 |
+
top_images_future = executor.submit(get_top_images, slider_value_int, toggle_btn)
|
614 |
+
|
615 |
+
# Get results with timeout to prevent hanging
|
616 |
+
try:
|
617 |
+
rgba_overlay = segmask_future.result(timeout=5)
|
618 |
+
except (concurrent.futures.TimeoutError, Exception) as e:
|
619 |
+
print(f"Error or timeout generating segmentation mask: {e}")
|
620 |
+
rgba_overlay = np.zeros((IMAGE_SIZE, IMAGE_SIZE, 4), dtype=np.uint8)
|
621 |
+
|
622 |
+
try:
|
623 |
+
top_images = top_images_future.result(timeout=5)
|
624 |
+
except (concurrent.futures.TimeoutError, Exception) as e:
|
625 |
+
print(f"Error or timeout getting top images: {e}")
|
626 |
+
top_images = [Image.new("RGB", (256, 256), (255, 255, 255)) for _ in range(3)]
|
627 |
+
|
628 |
+
# Prepare activation values with error handling
|
629 |
+
act_values = []
|
630 |
+
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
|
631 |
+
try:
|
632 |
+
if dataset in sae_data_dict["mean_act_values"]:
|
633 |
+
values = sae_data_dict["mean_act_values"][dataset]
|
634 |
+
if slider_value_int < values.shape[0]:
|
635 |
+
act_value = values[slider_value_int, :5]
|
636 |
+
act_value = [str(round(value, 3)) for value in act_value]
|
637 |
+
act_value = " | ".join(act_value)
|
638 |
+
out = f"#### Activation values: {act_value}"
|
639 |
+
else:
|
640 |
+
out = f"#### Activation values: Index out of range"
|
641 |
+
else:
|
642 |
+
out = f"#### Activation values: Dataset not available"
|
643 |
+
except Exception as e:
|
644 |
+
print(f"Error getting activation values for {dataset}: {e}")
|
645 |
+
out = f"#### Activation values: Error retrieving data"
|
646 |
+
|
647 |
+
act_values.append(out)
|
648 |
+
|
649 |
+
return rgba_overlay, top_images, act_values
|
650 |
+
|
651 |
+
except Exception as e:
|
652 |
+
print(f"Error in show_activation_heatmap: {e}")
|
653 |
+
# Return placeholder data in case of error
|
654 |
+
return (
|
655 |
+
np.zeros((IMAGE_SIZE, IMAGE_SIZE, 4), dtype=np.uint8),
|
656 |
+
[Image.new("RGB", (256, 256), (255, 255, 255)) for _ in range(3)],
|
657 |
+
["#### Activation values: Error occurred"] * 3
|
658 |
+
)
|
659 |
|
660 |
def show_activation_heatmap_clip(selected_image, slider_value, toggle_btn):
|
661 |
+
"""Show CLIP activation heatmap"""
|
662 |
rgba_overlay, top_images, act_values = show_activation_heatmap(
|
663 |
selected_image, slider_value, "CLIP", toggle_btn
|
664 |
)
|
665 |
+
|
666 |
return (
|
667 |
rgba_overlay,
|
668 |
top_images[0],
|
|
|
673 |
act_values[2],
|
674 |
)
|
675 |
|
|
|
676 |
def show_activation_heatmap_maple(selected_image, slider_value, model_name):
|
677 |
+
"""Show MaPLE activation heatmap"""
|
678 |
+
slider_value_int = int(slider_value.split("-")[-1])
|
679 |
+
rgba_overlay = get_segmask(selected_image, slider_value_int, model_name)
|
680 |
+
|
681 |
return rgba_overlay
|
682 |
|
683 |
+
# Optimize radio options generation
|
684 |
def get_init_radio_options(selected_image, model_name):
|
685 |
+
"""Get initial radio options with optimized processing"""
|
686 |
clip_neuron_dict = {}
|
687 |
maple_neuron_dict = {}
|
688 |
+
|
689 |
def _get_top_actvation(selected_image, model_name, neuron_dict, top_k=5):
|
690 |
activations = get_activation_distribution(selected_image, model_name).mean(0)
|
691 |
top_neurons = list(np.argsort(activations)[::-1][:top_k])
|
|
|
695 |
sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True)
|
696 |
)
|
697 |
return sorted_dict
|
698 |
+
|
699 |
+
# Process in parallel
|
700 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
|
701 |
+
future_clip = executor.submit(_get_top_actvation, selected_image, "CLIP", {})
|
702 |
+
future_maple = executor.submit(_get_top_actvation, selected_image, model_name, {})
|
703 |
+
|
704 |
+
clip_neuron_dict = future_clip.result()
|
705 |
+
maple_neuron_dict = future_maple.result()
|
706 |
+
|
707 |
radio_choices = get_radio_names(clip_neuron_dict, maple_neuron_dict)
|
708 |
+
|
709 |
return radio_choices
|
710 |
|
|
|
711 |
def get_radio_names(clip_neuron_dict, maple_neuron_dict):
|
712 |
+
"""Get radio button names based on neuron activations"""
|
713 |
clip_keys = list(clip_neuron_dict.keys())
|
714 |
maple_keys = list(maple_neuron_dict.keys())
|
715 |
+
|
716 |
+
# Use set operations for better performance
|
717 |
common_keys = list(set(clip_keys).intersection(set(maple_keys)))
|
718 |
+
clip_only_keys = list(set(clip_keys) - set(maple_keys))
|
719 |
+
maple_only_keys = list(set(maple_keys) - set(clip_keys))
|
720 |
+
|
721 |
+
# Sort keys by activation values
|
722 |
common_keys.sort(
|
723 |
+
key=lambda x: max(clip_neuron_dict.get(x, 0), maple_neuron_dict.get(x, 0)),
|
724 |
+
reverse=True
|
725 |
)
|
726 |
+
clip_only_keys.sort(key=lambda x: clip_neuron_dict.get(x, 0), reverse=True)
|
727 |
+
maple_only_keys.sort(key=lambda x: maple_neuron_dict.get(x, 0), reverse=True)
|
728 |
+
|
729 |
+
# Limit number of choices to improve performance
|
730 |
out = []
|
731 |
out.extend([f"common-{i}" for i in common_keys[:5]])
|
732 |
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
|
733 |
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])
|
734 |
+
|
735 |
return out
|
736 |
|
737 |
+
def update_radio_options(evt, selected_image, model_name):
|
738 |
+
"""Update radio options based on user interaction"""
|
739 |
+
def _get_top_actvation(evt, selected_image, model_name):
|
740 |
+
neuron_dict = {}
|
|
|
|
|
|
|
|
|
741 |
all_activation = get_activation_distribution(selected_image, model_name)
|
742 |
image_activation = all_activation.mean(0)
|
743 |
+
|
744 |
+
# Get top activations from image-level
|
745 |
+
top_neurons = list(np.argsort(image_activation)[::-1][:5])
|
746 |
+
for top_neuron in top_neurons:
|
747 |
+
neuron_dict[top_neuron] = image_activation[top_neuron]
|
748 |
+
|
749 |
+
# Get top activations from tile-level if available
|
750 |
+
if evt is not None and evt._data is not None and isinstance(evt._data["index"], list):
|
751 |
+
image = data_dict[selected_image]["image"]
|
752 |
+
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
|
753 |
+
token_idx = grid_y * GRID_NUM + grid_x + 1
|
754 |
+
|
755 |
+
# Ensure token_idx is within bounds
|
756 |
+
if token_idx < all_activation.shape[0]:
|
757 |
tile_activations = all_activation[token_idx]
|
758 |
+
top_tile_neurons = list(np.argsort(tile_activations)[::-1][:5])
|
759 |
+
for top_neuron in top_tile_neurons:
|
760 |
+
neuron_dict[top_neuron] = max(
|
761 |
+
neuron_dict.get(top_neuron, 0),
|
762 |
+
tile_activations[top_neuron]
|
763 |
+
)
|
764 |
+
|
765 |
+
# Sort by activation value
|
766 |
+
return dict(sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True))
|
767 |
+
|
768 |
+
# Process in parallel
|
769 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
|
770 |
+
future_clip = executor.submit(_get_top_actvation, evt, selected_image, "CLIP")
|
771 |
+
future_maple = executor.submit(_get_top_actvation, evt, selected_image, model_name)
|
772 |
+
|
773 |
+
clip_neuron_dict = future_clip.result()
|
774 |
+
maple_neuron_dict = future_maple.result()
|
775 |
+
|
776 |
+
# Get radio choices
|
777 |
+
radio_choices = get_radio_names(clip_neuron_dict, maple_neuron_dict)
|
778 |
+
|
779 |
+
# Create radio component
|
780 |
+
radio = gr.Radio(
|
781 |
+
choices=radio_choices,
|
782 |
+
label="Top activating SAE latent",
|
783 |
+
value=radio_choices[0] if radio_choices else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
784 |
)
|
785 |
+
|
786 |
+
return radio
|
|
|
787 |
|
788 |
def update_markdown(option_value):
|
789 |
+
"""Update markdown text"""
|
790 |
latent_idx = int(option_value.split("-")[-1])
|
791 |
out_1 = f"## Segmentation mask for the selected SAE latent - {latent_idx}"
|
792 |
out_2 = f"## Top reference images for the selected SAE latent - {latent_idx}"
|
793 |
return out_1, out_2
|
794 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
795 |
def update_all(selected_image, slider_value, toggle_btn, model_name):
|
796 |
+
"""Update all UI components in optimized way"""
|
797 |
+
# Use a thread pool to parallelize operations
|
798 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
|
799 |
+
# Start both tasks
|
800 |
+
clip_future = executor.submit(
|
801 |
+
show_activation_heatmap_clip,
|
802 |
+
selected_image,
|
803 |
+
slider_value,
|
804 |
+
toggle_btn
|
805 |
+
)
|
806 |
+
|
807 |
+
maple_future = executor.submit(
|
808 |
+
show_activation_heatmap_maple,
|
809 |
+
selected_image,
|
810 |
+
slider_value,
|
811 |
+
model_name
|
812 |
+
)
|
813 |
+
|
814 |
+
# Get results
|
815 |
+
(
|
816 |
+
seg_mask_display,
|
817 |
+
top_image_1,
|
818 |
+
top_image_2,
|
819 |
+
top_image_3,
|
820 |
+
act_value_1,
|
821 |
+
act_value_2,
|
822 |
+
act_value_3,
|
823 |
+
) = clip_future.result()
|
824 |
+
|
825 |
+
seg_mask_display_maple = maple_future.result()
|
826 |
+
|
827 |
+
# Update markdown
|
828 |
markdown_display, markdown_display_2 = update_markdown(slider_value)
|
829 |
+
|
830 |
return (
|
831 |
seg_mask_display,
|
832 |
seg_mask_display_maple,
|
|
|
840 |
markdown_display_2,
|
841 |
)
|
842 |
|
843 |
+
# Initialize data - load at startup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
844 |
data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root)
|
845 |
default_image_name = "christmas-imagenet"
|
846 |
|
847 |
+
# Define UI with lazy loading
|
848 |
with gr.Blocks(
|
849 |
theme=gr.themes.Citrus(),
|
850 |
css="""
|
851 |
.image-row .gr-image { margin: 0 !important; padding: 0 !important; }
|
852 |
.image-row img { width: auto; height: 50px; } /* Set a uniform height for all images */
|
853 |
+
""",
|
854 |
) as demo:
|
855 |
with gr.Row():
|
856 |
with gr.Column():
|
|
|
862 |
label="Select Image",
|
863 |
)
|
864 |
image_display = gr.Image(
|
865 |
+
value=load_image(default_image_name),
|
866 |
type="pil",
|
867 |
interactive=True,
|
868 |
)
|
869 |
+
|
870 |
+
# Update image display when a new image is selected (with debounce)
|
871 |
image_selector.change(
|
872 |
+
fn=load_image,
|
873 |
inputs=image_selector,
|
874 |
outputs=image_display,
|
875 |
+
_js="""
|
876 |
+
function(img_name) {
|
877 |
+
// Simple debounce
|
878 |
+
clearTimeout(window._imageSelectTimeout);
|
879 |
+
return new Promise((resolve) => {
|
880 |
+
window._imageSelectTimeout = setTimeout(() => {
|
881 |
+
resolve(img_name);
|
882 |
+
}, 100);
|
883 |
+
});
|
884 |
+
}
|
885 |
+
"""
|
886 |
)
|
887 |
+
|
888 |
+
# Handle grid highlighting
|
889 |
image_display.select(
|
890 |
+
fn=highlight_grid,
|
891 |
+
inputs=[image_selector],
|
892 |
+
outputs=[image_display]
|
893 |
)
|
894 |
+
|
895 |
with gr.Column():
|
896 |
gr.Markdown("## SAE latent activations of CLIP and MaPLE")
|
897 |
model_options = [f"MaPLE-{dataset_name}" for dataset_name in DATASET_LIST]
|
|
|
900 |
value=model_options[0],
|
901 |
label="Select adapted model (MaPLe)",
|
902 |
)
|
903 |
+
|
904 |
+
# Initialize with a placeholder plot to avoid delays
|
|
|
905 |
neuron_plot = gr.Plot(
|
906 |
+
label="Neuron Activation",
|
907 |
+
show_label=False
|
908 |
)
|
909 |
+
|
910 |
+
# Add event handlers with proper data flow
|
911 |
+
def update_plot(evt, selected_image, model_name):
|
912 |
+
if hasattr(evt, '_data') and evt._data is not None:
|
913 |
+
return plot_activation_distribution(
|
914 |
+
tuple(map(tuple, evt._data.get('index', []))),
|
915 |
+
selected_image,
|
916 |
+
model_name
|
917 |
+
)
|
918 |
+
return plot_activation_distribution(None, selected_image, model_name)
|
919 |
+
|
920 |
+
# Load initial plot after UI is rendered
|
921 |
+
gr.on(
|
922 |
+
[image_selector.change, model_selector.change],
|
923 |
+
fn=lambda img, model: plot_activation_distribution(None, img, model),
|
924 |
inputs=[image_selector, model_selector],
|
925 |
outputs=neuron_plot,
|
926 |
)
|
927 |
+
|
928 |
+
# Update plot on image click
|
929 |
image_display.select(
|
930 |
+
fn=update_plot,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
931 |
inputs=[image_selector, model_selector],
|
932 |
outputs=neuron_plot,
|
933 |
)
|
934 |
|
935 |
with gr.Row():
|
936 |
with gr.Column():
|
937 |
+
# Initialize radio options
|
938 |
+
radio_names = gr.State(value=get_init_radio_options(default_image_name, model_options[0]))
|
939 |
+
|
940 |
+
# Initialize markdown displays
|
941 |
+
markdown_display = gr.Markdown(f"## Segmentation mask for the selected SAE latent")
|
942 |
+
|
943 |
+
# Initialize segmentation displays
|
|
|
|
|
|
|
944 |
gr.Markdown("### Localize SAE latent activation using CLIP")
|
945 |
+
seg_mask_display = gr.Image(type="pil", show_label=False)
|
946 |
+
|
|
|
|
|
947 |
gr.Markdown("### Localize SAE latent activation using MaPLE")
|
948 |
+
seg_mask_display_maple = gr.Image(type="pil", show_label=False)
|
949 |
+
|
|
|
|
|
950 |
with gr.Column():
|
951 |
gr.Markdown("## Top activating SAE latent index")
|
952 |
+
|
953 |
+
# Initialize radio component
|
954 |
radio_choices = gr.Radio(
|
|
|
955 |
label="Top activating SAE latent",
|
956 |
interactive=True,
|
|
|
957 |
)
|
958 |
+
|
959 |
+
# Initialize as soon as UI loads
|
960 |
+
gr.on(
|
961 |
+
gr.Blocks.load,
|
962 |
+
fn=lambda: gr.Radio.update(
|
963 |
+
choices=get_init_radio_options(default_image_name, model_options[0]),
|
964 |
+
value=get_init_radio_options(default_image_name, model_options[0])[0]
|
965 |
+
),
|
966 |
+
outputs=radio_choices
|
967 |
)
|
968 |
+
|
969 |
+
toggle_btn = gr.Checkbox(label="Show segmentation mask", value=False)
|
970 |
+
|
971 |
+
markdown_display_2 = gr.Markdown(f"## Top reference images for the selected SAE latent")
|
972 |
+
|
973 |
+
# Initialize image displays
|
974 |
gr.Markdown("### ImageNet")
|
975 |
+
top_image_1 = gr.Image(type="pil", label="ImageNet", show_label=False)
|
976 |
+
act_value_1 = gr.Markdown()
|
977 |
+
|
|
|
|
|
978 |
gr.Markdown("### ImageNet-Sketch")
|
979 |
+
top_image_2 = gr.Image(type="pil", label="ImageNet-Sketch", show_label=False)
|
980 |
+
act_value_2 = gr.Markdown()
|
981 |
+
|
|
|
|
|
|
|
|
|
|
|
982 |
gr.Markdown("### Caltech101")
|
983 |
+
top_image_3 = gr.Image(type="pil", label="Caltech101", show_label=False)
|
984 |
+
act_value_3 = gr.Markdown()
|
985 |
+
|
986 |
+
# Update radio options on image interaction
|
|
|
987 |
image_display.select(
|
988 |
fn=update_radio_options,
|
989 |
inputs=[image_selector, model_selector],
|
990 |
+
outputs=radio_choices,
|
991 |
)
|
992 |
+
|
993 |
+
# Update radio options on model change
|
994 |
model_selector.change(
|
995 |
fn=update_radio_options,
|
996 |
inputs=[image_selector, model_selector],
|
997 |
+
outputs=radio_choices,
|
998 |
)
|
999 |
+
|
1000 |
+
# Update radio options on image selection
|
1001 |
+
image_selector.change(
|
1002 |
fn=update_radio_options,
|
1003 |
inputs=[image_selector, model_selector],
|
1004 |
+
outputs=radio_choices,
|
1005 |
)
|
1006 |
+
|
1007 |
+
# Initialize
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|