Spaces:
Paused
Paused
File size: 9,648 Bytes
5ccd0e0 3579c4a 22d91a3 3579c4a 22d91a3 3579c4a 22d91a3 3579c4a 22d91a3 3579c4a 22d91a3 3579c4a 22d91a3 3579c4a 5ccd0e0 3579c4a 5f76223 3579c4a 22d91a3 3579c4a 22d91a3 3579c4a 22d91a3 3579c4a 22d91a3 3579c4a 22d91a3 3579c4a 22d91a3 3579c4a 22d91a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import os
import logging
import click
import torch
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler # for streaming response
from langchain.callbacks.manager import CallbackManager
torch.set_grad_enabled(False)
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
from prompt_template_utils import get_prompt_template
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from transformers import (
GenerationConfig,
pipeline,
)
from load_models import (
load_quantized_model_gguf_ggml,
load_quantized_model_qptq,
load_full_model,
)
from constants import (
EMBEDDING_MODEL_NAME,
PERSIST_DIRECTORY,
MODEL_ID,
MODEL_BASENAME,
MAX_NEW_TOKENS,
MODELS_PATH,
)
def load_model(device_type, model_id, model_basename=None, LOGGING=logging):
"""
Select a model for text generation using the HuggingFace library.
If you are running this for the first time, it will download a model for you.
subsequent runs will use the model from the disk.
Args:
device_type (str): Type of device to use, e.g., "cuda" for GPU or "cpu" for CPU.
model_id (str): Identifier of the model to load from HuggingFace's model hub.
model_basename (str, optional): Basename of the model if using quantized models.
Defaults to None.
Returns:
HuggingFacePipeline: A pipeline object for text generation using the loaded model.
Raises:
ValueError: If an unsupported model or device type is provided.
"""
logging.info(f"Loading Model: {model_id}, on: {device_type}")
logging.info("This action can take a few minutes!")
if model_basename is not None:
if ".gguf" in model_basename.lower():
llm = load_quantized_model_gguf_ggml(model_id, model_basename, device_type, LOGGING)
return llm
elif ".ggml" in model_basename.lower():
model, tokenizer = load_quantized_model_gguf_ggml(model_id, model_basename, device_type, LOGGING)
else:
model, tokenizer = load_quantized_model_qptq(model_id, model_basename, device_type, LOGGING)
else:
model, tokenizer = load_full_model(model_id, model_basename, device_type, LOGGING)
# Load configuration from the model to avoid warnings
generation_config = GenerationConfig.from_pretrained(model_id)
# see here for details:
# https://huggingface.co/docs/transformers/
# main_classes/text_generation#transformers.GenerationConfig.from_pretrained.returns
# Create a pipeline for text generation
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_length=50,
temperature=0.15,
top_p=0.1,
top_k=40,
repetition_penalty=1.0,
generation_config=generation_config,
)
local_llm = HuggingFacePipeline(pipeline=pipe)
logging.info("Local LLM Loaded")
return local_llm
def retrieval_qa_pipline(device_type, use_history, promptTemplate_type="llama"):
"""
Initializes and returns a retrieval-based Question Answering (QA) pipeline.
This function sets up a QA system that retrieves relevant information using embeddings
from the HuggingFace library. It then answers questions based on the retrieved information.
Parameters:
- device_type (str): Specifies the type of device where the model will run, e.g., 'cpu', 'cuda', etc.
- use_history (bool): Flag to determine whether to use chat history or not.
Returns:
- RetrievalQA: An initialized retrieval-based QA system.
Notes:
- The function uses embeddings from the HuggingFace library, either instruction-based or regular.
- The Chroma class is used to load a vector store containing pre-computed embeddings.
- The retriever fetches relevant documents or data based on a query.
- The prompt and memory, obtained from the `get_prompt_template` function, might be used in the QA system.
- The model is loaded onto the specified device using its ID and basename.
- The QA system retrieves relevant documents using the retriever and then answers questions based on those documents.
"""
embeddings = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": device_type})
# uncomment the following line if you used HuggingFaceEmbeddings in the ingest.py
# embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
# load the vectorstore
db = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=embeddings,
)
retriever = db.as_retriever()
# get the prompt template and memory if set by the user.
prompt, memory = get_prompt_template(promptTemplate_type=promptTemplate_type, history=use_history)
# load the llm pipeline
llm = load_model(device_type, model_id=MODEL_ID, model_basename=MODEL_BASENAME, LOGGING=logging)
if use_history:
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff", # try other chains types as well. refine, map_reduce, map_rerank
retriever=retriever,
return_source_documents=True, # verbose=True,
callbacks=callback_manager,
chain_type_kwargs={"prompt": prompt, "memory": memory},
)
else:
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff", # try other chains types as well. refine, map_reduce, map_rerank
retriever=retriever,
return_source_documents=True, # verbose=True,
callbacks=callback_manager,
chain_type_kwargs={
"prompt": prompt,
},
)
return qa
# chose device typ to run on as well as to show source documents.
@click.command()
@click.option(
"--device_type",
default="cuda" if torch.cuda.is_available() else "cpu",
type=click.Choice(
[
"cpu",
"cuda",
"ipu",
"xpu",
"mkldnn",
"opengl",
"opencl",
"ideep",
"hip",
"ve",
"fpga",
"ort",
"xla",
"lazy",
"vulkan",
"mps",
"meta",
"hpu",
"mtia",
],
),
help="Device to run on. (Default is cuda)",
)
@click.option(
"--show_sources",
"-s",
is_flag=True,
help="Show sources along with answers (Default is False)",
)
@click.option(
"--use_history",
"-h",
is_flag=True,
help="Use history (Default is False)",
)
@click.option(
"--model_type",
default="llama",
type=click.Choice(
["llama", "mistral", "non_llama"],
),
help="model type, llama, mistral or non_llama",
)
def main(device_type, show_sources, use_history, model_type):
"""
Implements the main information retrieval task for a localGPT.
This function sets up the QA system by loading the necessary embeddings, vectorstore, and LLM model.
It then enters an interactive loop where the user can input queries and receive answers. Optionally,
the source documents used to derive the answers can also be displayed.
Parameters:
- device_type (str): Specifies the type of device where the model will run, e.g., 'cpu', 'mps', 'cuda', etc.
- show_sources (bool): Flag to determine whether to display the source documents used for answering.
- use_history (bool): Flag to determine whether to use chat history or not.
Notes:
- Logging information includes the device type, whether source documents are displayed, and the use of history.
- If the models directory does not exist, it creates a new one to store models.
- The user can exit the interactive loop by entering "exit".
- The source documents are displayed if the show_sources flag is set to True.
"""
logging.info(f"Running on: {device_type}")
logging.info(f"Display Source Documents set to: {show_sources}")
logging.info(f"Use history set to: {use_history}")
# check if models directory do not exist, create a new one and store models here.
if not os.path.exists(MODELS_PATH):
os.mkdir(MODELS_PATH)
qa = retrieval_qa_pipline(device_type, use_history, promptTemplate_type=model_type)
# Interactive questions and answers
while True:
query = input("\nEnter a query: ")
if query == "exit":
break
# Get the answer from the chain
res = qa(query)
answer, docs = res["result"], res["source_documents"]
# Print the result
print("\n\n> Question:")
print(query)
print("\n> Answer:")
print(answer)
if show_sources: # this is a flag that you can set to disable showing answers.
# # Print the relevant sources used for the answer
print("----------------------------------SOURCE DOCUMENTS---------------------------")
for document in docs:
print("\n> " + document.metadata["source"] + ":")
print(document.page_content)
print("----------------------------------SOURCE DOCUMENTS---------------------------")
if __name__ == "__main__":
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)s - %(message)s", level=logging.INFO
)
main()
|