Spaces:
Paused
Paused
Update run_localGPT.py
Browse files- run_localGPT.py +212 -106
run_localGPT.py
CHANGED
@@ -1,95 +1,163 @@
|
|
1 |
-
import logging
|
2 |
import os
|
3 |
-
|
4 |
-
|
5 |
import click
|
6 |
import torch
|
7 |
-
from langchain.
|
8 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
9 |
-
from langchain.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from langchain.vectorstores import Chroma
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
14 |
|
15 |
from constants import (
|
16 |
-
CHROMA_SETTINGS,
|
17 |
-
DOCUMENT_MAP,
|
18 |
EMBEDDING_MODEL_NAME,
|
19 |
-
INGEST_THREADS,
|
20 |
PERSIST_DIRECTORY,
|
21 |
-
|
|
|
|
|
|
|
22 |
)
|
23 |
|
24 |
|
25 |
-
def
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
for file_name in files:
|
53 |
-
file_extension = os.path.splitext(file_name)[1]
|
54 |
-
source_file_path = os.path.join(root, file_name)
|
55 |
-
if file_extension in DOCUMENT_MAP.keys():
|
56 |
-
paths.append(source_file_path)
|
57 |
-
|
58 |
-
# Have at least one worker and at most INGEST_THREADS workers
|
59 |
-
n_workers = min(INGEST_THREADS, max(len(paths), 1))
|
60 |
-
chunksize = round(len(paths) / n_workers)
|
61 |
-
docs = []
|
62 |
-
with ProcessPoolExecutor(n_workers) as executor:
|
63 |
-
futures = []
|
64 |
-
# split the load operations into chunks
|
65 |
-
for i in range(0, len(paths), chunksize):
|
66 |
-
# select a chunk of filenames
|
67 |
-
filepaths = paths[i : (i + chunksize)]
|
68 |
-
# submit the task
|
69 |
-
future = executor.submit(load_document_batch, filepaths)
|
70 |
-
futures.append(future)
|
71 |
-
# process all results
|
72 |
-
for future in as_completed(futures):
|
73 |
-
# open the file and load the data
|
74 |
-
contents, _ = future.result()
|
75 |
-
docs.extend(contents)
|
76 |
-
|
77 |
-
return docs
|
78 |
-
|
79 |
-
|
80 |
-
def split_documents(documents: list[Document]) -> tuple[list[Document], list[Document]]:
|
81 |
-
# Splits documents for correct Text Splitter
|
82 |
-
text_docs, python_docs = [], []
|
83 |
-
for doc in documents:
|
84 |
-
file_extension = os.path.splitext(doc.metadata["source"])[1]
|
85 |
-
if file_extension == ".py":
|
86 |
-
python_docs.append(doc)
|
87 |
else:
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
return
|
91 |
|
92 |
|
|
|
93 |
@click.command()
|
94 |
@click.option(
|
95 |
"--device_type",
|
@@ -119,40 +187,78 @@ def split_documents(documents: list[Document]) -> tuple[list[Document], list[Doc
|
|
119 |
),
|
120 |
help="Device to run on. (Default is cuda)",
|
121 |
)
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
|
146 |
-
|
|
|
|
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
client_settings=CHROMA_SETTINGS,
|
153 |
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
|
158 |
if __name__ == "__main__":
|
|
|
|
|
1 |
import os
|
2 |
+
import logging
|
|
|
3 |
import click
|
4 |
import torch
|
5 |
+
from langchain.chains import RetrievalQA
|
6 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
7 |
+
from langchain.llms import HuggingFacePipeline
|
8 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler # for streaming response
|
9 |
+
from langchain.callbacks.manager import CallbackManager
|
10 |
+
|
11 |
+
torch.set_grad_enabled(False)
|
12 |
+
|
13 |
+
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
14 |
+
|
15 |
+
from prompt_template_utils import get_prompt_template
|
16 |
+
|
17 |
+
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
18 |
from langchain.vectorstores import Chroma
|
19 |
+
from transformers import (
|
20 |
+
GenerationConfig,
|
21 |
+
pipeline,
|
22 |
+
)
|
23 |
|
24 |
+
from load_models import (
|
25 |
+
load_quantized_model_gguf_ggml,
|
26 |
+
load_quantized_model_qptq,
|
27 |
+
load_full_model,
|
28 |
+
)
|
29 |
|
30 |
from constants import (
|
|
|
|
|
31 |
EMBEDDING_MODEL_NAME,
|
|
|
32 |
PERSIST_DIRECTORY,
|
33 |
+
MODEL_ID,
|
34 |
+
MODEL_BASENAME,
|
35 |
+
MAX_NEW_TOKENS,
|
36 |
+
MODELS_PATH,
|
37 |
)
|
38 |
|
39 |
|
40 |
+
def load_model(device_type, model_id, model_basename=None, LOGGING=logging):
|
41 |
+
"""
|
42 |
+
Select a model for text generation using the HuggingFace library.
|
43 |
+
If you are running this for the first time, it will download a model for you.
|
44 |
+
subsequent runs will use the model from the disk.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
device_type (str): Type of device to use, e.g., "cuda" for GPU or "cpu" for CPU.
|
48 |
+
model_id (str): Identifier of the model to load from HuggingFace's model hub.
|
49 |
+
model_basename (str, optional): Basename of the model if using quantized models.
|
50 |
+
Defaults to None.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
HuggingFacePipeline: A pipeline object for text generation using the loaded model.
|
54 |
+
|
55 |
+
Raises:
|
56 |
+
ValueError: If an unsupported model or device type is provided.
|
57 |
+
"""
|
58 |
+
logging.info(f"Loading Model: {model_id}, on: {device_type}")
|
59 |
+
logging.info("This action can take a few minutes!")
|
60 |
+
|
61 |
+
if model_basename is not None:
|
62 |
+
if ".gguf" in model_basename.lower():
|
63 |
+
llm = load_quantized_model_gguf_ggml(model_id, model_basename, device_type, LOGGING)
|
64 |
+
return llm
|
65 |
+
elif ".ggml" in model_basename.lower():
|
66 |
+
model, tokenizer = load_quantized_model_gguf_ggml(model_id, model_basename, device_type, LOGGING)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
else:
|
68 |
+
model, tokenizer = load_quantized_model_qptq(model_id, model_basename, device_type, LOGGING)
|
69 |
+
else:
|
70 |
+
model, tokenizer = load_full_model(model_id, model_basename, device_type, LOGGING)
|
71 |
+
|
72 |
+
# Load configuration from the model to avoid warnings
|
73 |
+
generation_config = GenerationConfig.from_pretrained(model_id)
|
74 |
+
# see here for details:
|
75 |
+
# https://huggingface.co/docs/transformers/
|
76 |
+
# main_classes/text_generation#transformers.GenerationConfig.from_pretrained.returns
|
77 |
+
|
78 |
+
# Create a pipeline for text generation
|
79 |
+
pipe = pipeline(
|
80 |
+
"text-generation",
|
81 |
+
model=model,
|
82 |
+
tokenizer=tokenizer,
|
83 |
+
max_length=50,
|
84 |
+
temperature=0.2,
|
85 |
+
# top_p=0.95,
|
86 |
+
repetition_penalty=1.15,
|
87 |
+
generation_config=generation_config,
|
88 |
+
)
|
89 |
+
|
90 |
+
local_llm = HuggingFacePipeline(pipeline=pipe)
|
91 |
+
logging.info("Local LLM Loaded")
|
92 |
+
|
93 |
+
return local_llm
|
94 |
+
|
95 |
+
|
96 |
+
def retrieval_qa_pipline(device_type, use_history, promptTemplate_type="llama"):
|
97 |
+
"""
|
98 |
+
Initializes and returns a retrieval-based Question Answering (QA) pipeline.
|
99 |
+
|
100 |
+
This function sets up a QA system that retrieves relevant information using embeddings
|
101 |
+
from the HuggingFace library. It then answers questions based on the retrieved information.
|
102 |
+
|
103 |
+
Parameters:
|
104 |
+
- device_type (str): Specifies the type of device where the model will run, e.g., 'cpu', 'cuda', etc.
|
105 |
+
- use_history (bool): Flag to determine whether to use chat history or not.
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
- RetrievalQA: An initialized retrieval-based QA system.
|
109 |
+
|
110 |
+
Notes:
|
111 |
+
- The function uses embeddings from the HuggingFace library, either instruction-based or regular.
|
112 |
+
- The Chroma class is used to load a vector store containing pre-computed embeddings.
|
113 |
+
- The retriever fetches relevant documents or data based on a query.
|
114 |
+
- The prompt and memory, obtained from the `get_prompt_template` function, might be used in the QA system.
|
115 |
+
- The model is loaded onto the specified device using its ID and basename.
|
116 |
+
- The QA system retrieves relevant documents using the retriever and then answers questions based on those documents.
|
117 |
+
"""
|
118 |
+
|
119 |
+
embeddings = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": device_type})
|
120 |
+
# uncomment the following line if you used HuggingFaceEmbeddings in the ingest.py
|
121 |
+
# embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
|
122 |
+
|
123 |
+
# load the vectorstore
|
124 |
+
db = Chroma(
|
125 |
+
persist_directory=PERSIST_DIRECTORY,
|
126 |
+
embedding_function=embeddings,
|
127 |
+
)
|
128 |
+
retriever = db.as_retriever()
|
129 |
+
|
130 |
+
# get the prompt template and memory if set by the user.
|
131 |
+
prompt, memory = get_prompt_template(promptTemplate_type=promptTemplate_type, history=use_history)
|
132 |
+
|
133 |
+
# load the llm pipeline
|
134 |
+
llm = load_model(device_type, model_id=MODEL_ID, model_basename=MODEL_BASENAME, LOGGING=logging)
|
135 |
+
|
136 |
+
if use_history:
|
137 |
+
qa = RetrievalQA.from_chain_type(
|
138 |
+
llm=llm,
|
139 |
+
chain_type="stuff", # try other chains types as well. refine, map_reduce, map_rerank
|
140 |
+
retriever=retriever,
|
141 |
+
return_source_documents=True, # verbose=True,
|
142 |
+
callbacks=callback_manager,
|
143 |
+
chain_type_kwargs={"prompt": prompt, "memory": memory},
|
144 |
+
)
|
145 |
+
else:
|
146 |
+
qa = RetrievalQA.from_chain_type(
|
147 |
+
llm=llm,
|
148 |
+
chain_type="stuff", # try other chains types as well. refine, map_reduce, map_rerank
|
149 |
+
retriever=retriever,
|
150 |
+
return_source_documents=True, # verbose=True,
|
151 |
+
callbacks=callback_manager,
|
152 |
+
chain_type_kwargs={
|
153 |
+
"prompt": prompt,
|
154 |
+
},
|
155 |
+
)
|
156 |
|
157 |
+
return qa
|
158 |
|
159 |
|
160 |
+
# chose device typ to run on as well as to show source documents.
|
161 |
@click.command()
|
162 |
@click.option(
|
163 |
"--device_type",
|
|
|
187 |
),
|
188 |
help="Device to run on. (Default is cuda)",
|
189 |
)
|
190 |
+
@click.option(
|
191 |
+
"--show_sources",
|
192 |
+
"-s",
|
193 |
+
is_flag=True,
|
194 |
+
help="Show sources along with answers (Default is False)",
|
195 |
+
)
|
196 |
+
@click.option(
|
197 |
+
"--use_history",
|
198 |
+
"-h",
|
199 |
+
is_flag=True,
|
200 |
+
help="Use history (Default is False)",
|
201 |
+
)
|
202 |
+
@click.option(
|
203 |
+
"--model_type",
|
204 |
+
default="llama",
|
205 |
+
type=click.Choice(
|
206 |
+
["llama", "mistral", "non_llama"],
|
207 |
+
),
|
208 |
+
help="model type, llama, mistral or non_llama",
|
209 |
+
)
|
210 |
+
def main(device_type, show_sources, use_history, model_type):
|
211 |
+
"""
|
212 |
+
Implements the main information retrieval task for a localGPT.
|
213 |
|
214 |
+
This function sets up the QA system by loading the necessary embeddings, vectorstore, and LLM model.
|
215 |
+
It then enters an interactive loop where the user can input queries and receive answers. Optionally,
|
216 |
+
the source documents used to derive the answers can also be displayed.
|
217 |
|
218 |
+
Parameters:
|
219 |
+
- device_type (str): Specifies the type of device where the model will run, e.g., 'cpu', 'mps', 'cuda', etc.
|
220 |
+
- show_sources (bool): Flag to determine whether to display the source documents used for answering.
|
221 |
+
- use_history (bool): Flag to determine whether to use chat history or not.
|
|
|
222 |
|
223 |
+
Notes:
|
224 |
+
- Logging information includes the device type, whether source documents are displayed, and the use of history.
|
225 |
+
- If the models directory does not exist, it creates a new one to store models.
|
226 |
+
- The user can exit the interactive loop by entering "exit".
|
227 |
+
- The source documents are displayed if the show_sources flag is set to True.
|
228 |
+
|
229 |
+
"""
|
230 |
+
|
231 |
+
logging.info(f"Running on: {device_type}")
|
232 |
+
logging.info(f"Display Source Documents set to: {show_sources}")
|
233 |
+
logging.info(f"Use history set to: {use_history}")
|
234 |
+
|
235 |
+
# check if models directory do not exist, create a new one and store models here.
|
236 |
+
if not os.path.exists(MODELS_PATH):
|
237 |
+
os.mkdir(MODELS_PATH)
|
238 |
+
|
239 |
+
qa = retrieval_qa_pipline(device_type, use_history, promptTemplate_type=model_type)
|
240 |
+
# Interactive questions and answers
|
241 |
+
while True:
|
242 |
+
query = input("\nEnter a query: ")
|
243 |
+
if query == "exit":
|
244 |
+
break
|
245 |
+
# Get the answer from the chain
|
246 |
+
res = qa(query)
|
247 |
+
answer, docs = res["result"], res["source_documents"]
|
248 |
+
|
249 |
+
# Print the result
|
250 |
+
print("\n\n> Question:")
|
251 |
+
print(query)
|
252 |
+
print("\n> Answer:")
|
253 |
+
print(answer)
|
254 |
+
|
255 |
+
if show_sources: # this is a flag that you can set to disable showing answers.
|
256 |
+
# # Print the relevant sources used for the answer
|
257 |
+
print("----------------------------------SOURCE DOCUMENTS---------------------------")
|
258 |
+
for document in docs:
|
259 |
+
print("\n> " + document.metadata["source"] + ":")
|
260 |
+
print(document.page_content)
|
261 |
+
print("----------------------------------SOURCE DOCUMENTS---------------------------")
|
262 |
|
263 |
|
264 |
if __name__ == "__main__":
|