Spaces:
Paused
Paused
Update run_localGPT.py
Browse files- run_localGPT.py +106 -212
run_localGPT.py
CHANGED
@@ -1,163 +1,95 @@
|
|
1 |
-
import os
|
2 |
import logging
|
|
|
|
|
|
|
3 |
import click
|
4 |
import torch
|
5 |
-
from langchain.
|
6 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
7 |
-
from langchain.
|
8 |
-
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler # for streaming response
|
9 |
-
from langchain.callbacks.manager import CallbackManager
|
10 |
-
|
11 |
-
torch.set_grad_enabled(False)
|
12 |
-
|
13 |
-
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
14 |
-
|
15 |
-
from prompt_template_utils import get_prompt_template
|
16 |
-
|
17 |
-
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
18 |
from langchain.vectorstores import Chroma
|
19 |
-
from transformers import (
|
20 |
-
GenerationConfig,
|
21 |
-
pipeline,
|
22 |
-
)
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
load_quantized_model_qptq,
|
27 |
-
load_full_model,
|
28 |
-
)
|
29 |
|
30 |
from constants import (
|
|
|
|
|
31 |
EMBEDDING_MODEL_NAME,
|
|
|
32 |
PERSIST_DIRECTORY,
|
33 |
-
|
34 |
-
MODEL_BASENAME,
|
35 |
-
MAX_NEW_TOKENS,
|
36 |
-
MODELS_PATH,
|
37 |
)
|
38 |
|
39 |
|
40 |
-
def
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
Args:
|
47 |
-
device_type (str): Type of device to use, e.g., "cuda" for GPU or "cpu" for CPU.
|
48 |
-
model_id (str): Identifier of the model to load from HuggingFace's model hub.
|
49 |
-
model_basename (str, optional): Basename of the model if using quantized models.
|
50 |
-
Defaults to None.
|
51 |
-
|
52 |
-
Returns:
|
53 |
-
HuggingFacePipeline: A pipeline object for text generation using the loaded model.
|
54 |
-
|
55 |
-
Raises:
|
56 |
-
ValueError: If an unsupported model or device type is provided.
|
57 |
-
"""
|
58 |
-
logging.info(f"Loading Model: {model_id}, on: {device_type}")
|
59 |
-
logging.info("This action can take a few minutes!")
|
60 |
-
|
61 |
-
if model_basename is not None:
|
62 |
-
if ".gguf" in model_basename.lower():
|
63 |
-
llm = load_quantized_model_gguf_ggml(model_id, model_basename, device_type, LOGGING)
|
64 |
-
return llm
|
65 |
-
elif ".ggml" in model_basename.lower():
|
66 |
-
model, tokenizer = load_quantized_model_gguf_ggml(model_id, model_basename, device_type, LOGGING)
|
67 |
-
else:
|
68 |
-
model, tokenizer = load_quantized_model_qptq(model_id, model_basename, device_type, LOGGING)
|
69 |
-
else:
|
70 |
-
model, tokenizer = load_full_model(model_id, model_basename, device_type, LOGGING)
|
71 |
-
|
72 |
-
# Load configuration from the model to avoid warnings
|
73 |
-
generation_config = GenerationConfig.from_pretrained(model_id)
|
74 |
-
# see here for details:
|
75 |
-
# https://huggingface.co/docs/transformers/
|
76 |
-
# main_classes/text_generation#transformers.GenerationConfig.from_pretrained.returns
|
77 |
-
|
78 |
-
# Create a pipeline for text generation
|
79 |
-
pipe = pipeline(
|
80 |
-
"text-generation",
|
81 |
-
model=model,
|
82 |
-
tokenizer=tokenizer,
|
83 |
-
max_length=50,
|
84 |
-
temperature=0.2,
|
85 |
-
# top_p=0.95,
|
86 |
-
repetition_penalty=1.15,
|
87 |
-
generation_config=generation_config,
|
88 |
-
)
|
89 |
-
|
90 |
-
local_llm = HuggingFacePipeline(pipeline=pipe)
|
91 |
-
logging.info("Local LLM Loaded")
|
92 |
-
|
93 |
-
return local_llm
|
94 |
-
|
95 |
-
|
96 |
-
def retrieval_qa_pipline(device_type, use_history, promptTemplate_type="llama"):
|
97 |
-
"""
|
98 |
-
Initializes and returns a retrieval-based Question Answering (QA) pipeline.
|
99 |
-
|
100 |
-
This function sets up a QA system that retrieves relevant information using embeddings
|
101 |
-
from the HuggingFace library. It then answers questions based on the retrieved information.
|
102 |
-
|
103 |
-
Parameters:
|
104 |
-
- device_type (str): Specifies the type of device where the model will run, e.g., 'cpu', 'cuda', etc.
|
105 |
-
- use_history (bool): Flag to determine whether to use chat history or not.
|
106 |
-
|
107 |
-
Returns:
|
108 |
-
- RetrievalQA: An initialized retrieval-based QA system.
|
109 |
-
|
110 |
-
Notes:
|
111 |
-
- The function uses embeddings from the HuggingFace library, either instruction-based or regular.
|
112 |
-
- The Chroma class is used to load a vector store containing pre-computed embeddings.
|
113 |
-
- The retriever fetches relevant documents or data based on a query.
|
114 |
-
- The prompt and memory, obtained from the `get_prompt_template` function, might be used in the QA system.
|
115 |
-
- The model is loaded onto the specified device using its ID and basename.
|
116 |
-
- The QA system retrieves relevant documents using the retriever and then answers questions based on those documents.
|
117 |
-
"""
|
118 |
-
|
119 |
-
embeddings = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": device_type})
|
120 |
-
# uncomment the following line if you used HuggingFaceEmbeddings in the ingest.py
|
121 |
-
# embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
|
122 |
-
|
123 |
-
# load the vectorstore
|
124 |
-
db = Chroma(
|
125 |
-
persist_directory=PERSIST_DIRECTORY,
|
126 |
-
embedding_function=embeddings,
|
127 |
-
)
|
128 |
-
retriever = db.as_retriever()
|
129 |
-
|
130 |
-
# get the prompt template and memory if set by the user.
|
131 |
-
prompt, memory = get_prompt_template(promptTemplate_type=promptTemplate_type, history=use_history)
|
132 |
-
|
133 |
-
# load the llm pipeline
|
134 |
-
llm = load_model(device_type, model_id=MODEL_ID, model_basename=MODEL_BASENAME, LOGGING=logging)
|
135 |
-
|
136 |
-
if use_history:
|
137 |
-
qa = RetrievalQA.from_chain_type(
|
138 |
-
llm=llm,
|
139 |
-
chain_type="stuff", # try other chains types as well. refine, map_reduce, map_rerank
|
140 |
-
retriever=retriever,
|
141 |
-
return_source_documents=True, # verbose=True,
|
142 |
-
callbacks=callback_manager,
|
143 |
-
chain_type_kwargs={"prompt": prompt, "memory": memory},
|
144 |
-
)
|
145 |
else:
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
-
return
|
158 |
|
159 |
|
160 |
-
# chose device typ to run on as well as to show source documents.
|
161 |
@click.command()
|
162 |
@click.option(
|
163 |
"--device_type",
|
@@ -187,78 +119,40 @@ def retrieval_qa_pipline(device_type, use_history, promptTemplate_type="llama"):
|
|
187 |
),
|
188 |
help="Device to run on. (Default is cuda)",
|
189 |
)
|
190 |
-
|
191 |
-
|
192 |
-
"
|
193 |
-
|
194 |
-
|
195 |
-
)
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
)
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
This function sets up the QA system by loading the necessary embeddings, vectorstore, and LLM model.
|
215 |
-
It then enters an interactive loop where the user can input queries and receive answers. Optionally,
|
216 |
-
the source documents used to derive the answers can also be displayed.
|
217 |
-
|
218 |
-
Parameters:
|
219 |
-
- device_type (str): Specifies the type of device where the model will run, e.g., 'cpu', 'mps', 'cuda', etc.
|
220 |
-
- show_sources (bool): Flag to determine whether to display the source documents used for answering.
|
221 |
-
- use_history (bool): Flag to determine whether to use chat history or not.
|
222 |
-
|
223 |
-
Notes:
|
224 |
-
- Logging information includes the device type, whether source documents are displayed, and the use of history.
|
225 |
-
- If the models directory does not exist, it creates a new one to store models.
|
226 |
-
- The user can exit the interactive loop by entering "exit".
|
227 |
-
- The source documents are displayed if the show_sources flag is set to True.
|
228 |
-
|
229 |
-
"""
|
230 |
-
|
231 |
-
logging.info(f"Running on: {device_type}")
|
232 |
-
logging.info(f"Display Source Documents set to: {show_sources}")
|
233 |
-
logging.info(f"Use history set to: {use_history}")
|
234 |
-
|
235 |
-
# check if models directory do not exist, create a new one and store models here.
|
236 |
-
if not os.path.exists(MODELS_PATH):
|
237 |
-
os.mkdir(MODELS_PATH)
|
238 |
|
239 |
-
|
240 |
-
# Interactive questions and answers
|
241 |
-
while True:
|
242 |
-
query = input("\nEnter a query: ")
|
243 |
-
if query == "exit":
|
244 |
-
break
|
245 |
-
# Get the answer from the chain
|
246 |
-
res = qa(query)
|
247 |
-
answer, docs = res["result"], res["source_documents"]
|
248 |
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
print("----------------------------------SOURCE DOCUMENTS---------------------------")
|
258 |
-
for document in docs:
|
259 |
-
print("\n> " + document.metadata["source"] + ":")
|
260 |
-
print(document.page_content)
|
261 |
-
print("----------------------------------SOURCE DOCUMENTS---------------------------")
|
262 |
|
263 |
|
264 |
if __name__ == "__main__":
|
|
|
|
|
1 |
import logging
|
2 |
+
import os
|
3 |
+
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed
|
4 |
+
|
5 |
import click
|
6 |
import torch
|
7 |
+
from langchain.docstore.document import Document
|
8 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
9 |
+
from langchain.text_splitter import Language, RecursiveCharacterTextSplitter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from langchain.vectorstores import Chroma
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
torch.cuda.empty_cache()
|
13 |
+
torch.cuda.memory_summary(device=None, abbreviated=False)
|
|
|
|
|
|
|
14 |
|
15 |
from constants import (
|
16 |
+
CHROMA_SETTINGS,
|
17 |
+
DOCUMENT_MAP,
|
18 |
EMBEDDING_MODEL_NAME,
|
19 |
+
INGEST_THREADS,
|
20 |
PERSIST_DIRECTORY,
|
21 |
+
SOURCE_DIRECTORY,
|
|
|
|
|
|
|
22 |
)
|
23 |
|
24 |
|
25 |
+
def load_single_document(file_path: str) -> Document:
|
26 |
+
# Loads a single document from a file path
|
27 |
+
file_extension = os.path.splitext(file_path)[1]
|
28 |
+
loader_class = DOCUMENT_MAP.get(file_extension)
|
29 |
+
if loader_class:
|
30 |
+
loader = loader_class(file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
else:
|
32 |
+
raise ValueError("Document type is undefined")
|
33 |
+
return loader.load()[0]
|
34 |
+
|
35 |
+
|
36 |
+
def load_document_batch(filepaths):
|
37 |
+
logging.info("Loading document batch")
|
38 |
+
# create a thread pool
|
39 |
+
with ThreadPoolExecutor(len(filepaths)) as exe:
|
40 |
+
# load files
|
41 |
+
futures = [exe.submit(load_single_document, name) for name in filepaths]
|
42 |
+
# collect data
|
43 |
+
data_list = [future.result() for future in futures]
|
44 |
+
# return data and file paths
|
45 |
+
return (data_list, filepaths)
|
46 |
+
|
47 |
+
|
48 |
+
def load_documents(source_dir: str) -> list[Document]:
|
49 |
+
# Loads all documents from the source documents directory, including nested folders
|
50 |
+
paths = []
|
51 |
+
for root, _, files in os.walk(source_dir):
|
52 |
+
for file_name in files:
|
53 |
+
file_extension = os.path.splitext(file_name)[1]
|
54 |
+
source_file_path = os.path.join(root, file_name)
|
55 |
+
if file_extension in DOCUMENT_MAP.keys():
|
56 |
+
paths.append(source_file_path)
|
57 |
+
|
58 |
+
# Have at least one worker and at most INGEST_THREADS workers
|
59 |
+
n_workers = min(INGEST_THREADS, max(len(paths), 1))
|
60 |
+
chunksize = round(len(paths) / n_workers)
|
61 |
+
docs = []
|
62 |
+
with ProcessPoolExecutor(n_workers) as executor:
|
63 |
+
futures = []
|
64 |
+
# split the load operations into chunks
|
65 |
+
for i in range(0, len(paths), chunksize):
|
66 |
+
# select a chunk of filenames
|
67 |
+
filepaths = paths[i : (i + chunksize)]
|
68 |
+
# submit the task
|
69 |
+
future = executor.submit(load_document_batch, filepaths)
|
70 |
+
futures.append(future)
|
71 |
+
# process all results
|
72 |
+
for future in as_completed(futures):
|
73 |
+
# open the file and load the data
|
74 |
+
contents, _ = future.result()
|
75 |
+
docs.extend(contents)
|
76 |
+
|
77 |
+
return docs
|
78 |
+
|
79 |
+
|
80 |
+
def split_documents(documents: list[Document]) -> tuple[list[Document], list[Document]]:
|
81 |
+
# Splits documents for correct Text Splitter
|
82 |
+
text_docs, python_docs = [], []
|
83 |
+
for doc in documents:
|
84 |
+
file_extension = os.path.splitext(doc.metadata["source"])[1]
|
85 |
+
if file_extension == ".py":
|
86 |
+
python_docs.append(doc)
|
87 |
+
else:
|
88 |
+
text_docs.append(doc)
|
89 |
|
90 |
+
return text_docs, python_docs
|
91 |
|
92 |
|
|
|
93 |
@click.command()
|
94 |
@click.option(
|
95 |
"--device_type",
|
|
|
119 |
),
|
120 |
help="Device to run on. (Default is cuda)",
|
121 |
)
|
122 |
+
def main(device_type):
|
123 |
+
# Load documents and split in chunks
|
124 |
+
logging.info(f"Loading documents from {SOURCE_DIRECTORY}")
|
125 |
+
documents = load_documents(SOURCE_DIRECTORY)
|
126 |
+
text_documents, python_documents = split_documents(documents)
|
127 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
128 |
+
python_splitter = RecursiveCharacterTextSplitter.from_language(
|
129 |
+
language=Language.PYTHON, chunk_size=880, chunk_overlap=200
|
130 |
+
)
|
131 |
+
texts = text_splitter.split_documents(text_documents)
|
132 |
+
texts.extend(python_splitter.split_documents(python_documents))
|
133 |
+
logging.info(f"Loaded {len(documents)} documents from {SOURCE_DIRECTORY}")
|
134 |
+
logging.info(f"Split into {len(texts)} chunks of text")
|
135 |
+
|
136 |
+
# Create embeddings
|
137 |
+
embeddings = HuggingFaceInstructEmbeddings(
|
138 |
+
model_name=EMBEDDING_MODEL_NAME,
|
139 |
+
model_kwargs={"device": device_type},
|
140 |
+
)
|
141 |
+
# change the embedding type here if you are running into issues.
|
142 |
+
# These are much smaller embeddings and will work for most appications
|
143 |
+
# If you use HuggingFaceEmbeddings, make sure to also use the same in the
|
144 |
+
# run_localGPT.py file.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
+
# embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
+
db = Chroma.from_documents(
|
149 |
+
texts,
|
150 |
+
embeddings,
|
151 |
+
persist_directory=PERSIST_DIRECTORY,
|
152 |
+
client_settings=CHROMA_SETTINGS,
|
153 |
|
154 |
+
)
|
155 |
+
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
|
158 |
if __name__ == "__main__":
|