File size: 2,385 Bytes
fa67bc8
d78dbfd
0308cfc
 
 
 
 
 
0a0896b
0308cfc
beceabe
 
 
fa67bc8
0308cfc
e8b031a
 
 
 
 
 
 
 
0308cfc
e6e4b49
0308cfc
e6e4b49
0308cfc
 
 
 
b63b2a2
 
 
 
 
 
0308cfc
 
 
e6e4b49
fa67bc8
0308cfc
fa67bc8
 
 
 
 
0308cfc
d051b0c
 
 
 
4c26c8e
 
 
0308cfc
 
4c26c8e
0308cfc
 
be93c19
fa67bc8
0308cfc
fa67bc8
0308cfc
 
fa67bc8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import gradio as gr
import PyPDF2
from langchain.embeddings import GooglePalmEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.llms import GooglePalm

# Define chatbot response function
def chatbot_response(user_input):
    # Example: returning a placeholder response, update with actual chatbot logic
    # bot_response = "You said: " + user_input
    # history.append((user_input, bot_response))
    return "hii"

# Define text splitter function
def text_splitter_function(text):
    text_splitter = CharacterTextSplitter(
        separator = '\n',
        chunk_size = 1000,
        chunk_overlap = 40,
        length_function = len,
    )
    texts = text_splitter.split_text(text)
    return texts

# Helper function for text processing
def helper(text_splitter):
    db = FAISS.from_texts(text_splitter, embeddings)  # Use 'embeddings' for FAISS
    return 'hi'

# PDF text extraction function
def text_extract(file):
    pdf_reader = PyPDF2.PdfReader(file.name)
    num_pages = len(pdf_reader.pages)
    text = ""
    for page_num in range(num_pages):
        page = pdf_reader.pages[page_num]
        text += page.extract_text() or ""
    text_splitter = text_splitter_function(text)  # Split extracted text into chunks
    result = helper(text_splitter)  # Call helper to process text chunks
    return result

# Define Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Chat with ChatGPT-like Interface")

    chatbot = gr.Chatbot()
    state = gr.State([])

    with gr.Row():
        with gr.Column():
            user_input = gr.Textbox(show_label=False, placeholder="Type your message here...")
            send_btn = gr.Button("Send")
        # with gr.Column():
        #     input_file = gr.File(label="Upload PDF", file_count="single")
        #     submit_btn = gr.Button("Submit")
    
    # Connect submit button to text_extract function
    # submit_btn.click(text_extract, inputs=[input_file], outputs=[user_input])

    # Connect send button to chatbot_response function
    send_btn.click(chatbot_response, inputs=[user_input], outputs=[chatbot])

# Initialize embeddings and launch the app
if __name__ == "__main__":
    google_api_key = "YOUR_GOOGLE_API_KEY"  # Replace with your actual Google API key
    embeddings = GooglePalmEmbeddings(google_api_key=google_api_key)
    demo.launch()