creating chatbot
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain.llms import GooglePalm
|
3 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
from langchain.embeddings import GooglePalmEmbeddings
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
+
from langchain.document_loaders import PyPDFLoader
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from secret1 import GOOGLE_API as google_api
|
10 |
+
import PyPDF2
|
11 |
+
def chatbot_response(user_input, history):
|
12 |
+
# This is a placeholder function. Replace with your actual chatbot logic.
|
13 |
+
bot_response = "You said: " + user_input
|
14 |
+
history.append((user_input, bot_response))
|
15 |
+
return history, history
|
16 |
+
|
17 |
+
def text_splitter_function(text):
|
18 |
+
text_splitter = CharacterTextSplitter(
|
19 |
+
separator = '\n',
|
20 |
+
chunk_size = 1000,
|
21 |
+
chunk_overlap = 40,
|
22 |
+
length_function = len,
|
23 |
+
)
|
24 |
+
texts = text_splitter.split_text(text)
|
25 |
+
return texts;
|
26 |
+
|
27 |
+
def text_extract(file):
|
28 |
+
pdf_reader = PyPDF2.PdfReader(file.name)
|
29 |
+
# Get the number of pages
|
30 |
+
num_pages = len(pdf_reader.pages)
|
31 |
+
# Extract text from each page
|
32 |
+
text = ""
|
33 |
+
for page_num in range(num_pages):
|
34 |
+
page = pdf_reader.pages[page_num]
|
35 |
+
text += page.extract_text()
|
36 |
+
text_splitter=text_splitter_function(text);
|
37 |
+
db = FAISS.from_texts(text_splitter, embeddings);
|
38 |
+
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 2})
|
39 |
+
llm=GooglePalm(google_api_key=google_api)
|
40 |
+
qa = RetrievalQA.from_chain_type(
|
41 |
+
llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True
|
42 |
+
)
|
43 |
+
print(db)
|
44 |
+
return text
|
45 |
+
|
46 |
+
|
47 |
+
with gr.Blocks() as demo:
|
48 |
+
gr.Markdown("# Chat with ChatGPT-like Interface")
|
49 |
+
|
50 |
+
chatbot = gr.Chatbot()
|
51 |
+
state = gr.State([])
|
52 |
+
|
53 |
+
with gr.Row():
|
54 |
+
with gr.Column():
|
55 |
+
user_input = gr.Textbox(show_label=False, placeholder="Type your message here...")
|
56 |
+
send_btn = gr.Button("Send")
|
57 |
+
with gr.Column():
|
58 |
+
input_file=gr.File(label="Upload PDF", file_count="single")
|
59 |
+
submit_btn=gr.Button("Submit")
|
60 |
+
submit_btn.click(text_extract, [input_file], [user_input])
|
61 |
+
send_btn.click(chatbot_response,[user_input,state],[chatbot, state])
|
62 |
+
|
63 |
+
if __name__ == "__main__":
|
64 |
+
embeddings=GooglePalmEmbeddings(google_api_key=google_api)
|
65 |
+
demo.launch()
|